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Abstract. Software vulnerabilities pose significant security threats, re-
quiring effective mitigation. While Automated Program Repair (APR)
has advanced in fixing general bugs, vulnerability patching—a security-
critical aspect of APR—remains underexplored. This study investigates
pre-trained language models, CodeBERT and CodeT5, for automated
vulnerability patching across six datasets and four languages. We eval-
uate their accuracy and generalization to unknown vulnerabilities. Re-
sults show that while both models face challenges with fragmented or
sparse context, CodeBERT performs comparatively better in such sce-
narios, whereas CodeT5 excels in capturing complex vulnerability pat-
terns. CodeT5 also demonstrates superior scalability. Furthermore, we
test fine-tuned models on both in-distribution (trained) and out-of-distribution
(unseen) datasets. While fine-tuning improves in-distribution performance,
models struggle to generalize to unseen data, highlighting challenges in
robust vulnerability detection. This study benchmarks model perfor-
mance, identifies limitations in generalization, and provides actionable
insights to advance automated vulnerability patching for real-world se-
curity applications.

Keywords: code patching · vulnerability patching · large language mod-
els · automated program repair

1 Introduction

Software vulnerabilities remain a constant threat to contemporary software sys-
tems, leaving them susceptible to exploitation by malicious actors. These vulner-
abilities, which include problems like injection flaws and memory management
errors, can result in unauthorized access, data breaches, and service interrup-
tions [34]. Addressing these issues is essential to ensure the reliability and secu-
rity of software systems [1]. However, the manual effort required to detect and fix
these vulnerabilities is time-consuming, prone to errors, and struggles to match
the growing complexity and scale of today’s software ecosystems [23].

Automated Program Repair (APR) has gained traction as a promising ap-
proach to tackle this issue, employing computational methods to autonomously
generate fixes for software bugs [3]. While APR has achieved notable progress in
addressing general software defects, the specialized area of vulnerability-focused
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program repair—which deals with the unique challenges of security vulnera-
bilities—remains underdeveloped. Unlike general-purpose bug fixes, patches for
vulnerabilities often require addressing the flaw in a way that is not only func-
tionally correct but also generalizable across variations of the vulnerability [9].
This makes vulnerability patching a more nuanced subset of Automated Program
Repair (APR), where the ability to generate broadly applicable fixes becomes
especially important.

Existing techniques in vulnerability-focused Automated Program Repair (APR)
predominantly depend on either static analysis tools or traditional machine
learning models trained on specific vulnerability patterns. Although these ap-
proaches have demonstrated potential in identifying vulnerabilities, their capac-
ity to generate meaningful and effective patches remains limited. For instance,
static analysis tools are highly effective at detecting vulnerabilities but often
struggle to produce practical fixes [36]. Similarly, conventional machine learning
models are hindered by their dependence on restricted datasets [14], which lim-
its their generalizability and effectiveness across a wide range of programming
languages and vulnerability types [38].

Recent advancements in deep-learning have paved the way for automated
vulnerability patching, particularly with the emergence of pre-trained language
models tailored for code. Models like CodeBERT[12] and CodeT5[39] utilize
large-scale code corpora to capture both syntactic and semantic structures, fa-
cilitating tasks such as code generation, summarization, and translation [17].
Their ability to discern patterns from extensive datasets makes them a promis-
ing tool for vulnerability-focused program repair. However, the practical ap-
plication of these models remains challenging. Due to substantial differences
in syntax, semantics, and vulnerability characteristics across programming lan-
guages, existing pre-trained models, which are often designed for monolingual
or domain-specific tasks, may struggle with generalization [8]. Evaluating their
performance across diverse languages is therefore a crucial yet underexplored
area of research [19].

This paper systematically evaluates the performance of pre-trained language
models in vulnerability-focused program repair, specifically analyzing Code-
BERT and CodeT5 in generating patches for known vulnerabilities across six
datasets covering four programming languages. We assess their effectiveness us-
ing CodeBLEU and CrystalBLEU scores and explore their generalizability by
evaluating performance on both in-distribution and out-of-distribution datasets,
providing insights into their strengths and limitations.

Our results show that while both models excel in generating vulnerability
patches, they exhibit distinct limitations. CodeT5 generally outperforms Code-
BERT in accuracy, especially on datasets with complex vulnerability patterns.
However, both models struggle with fragmented contexts and sparse data, which
limits their ability to produce correct fixes in such settings. Additionally, while
fine-tuning improves performance on in-distribution datasets, both models face
challenges in generalizing to out-of-distribution datasets, highlighting limitations
in detecting and patching vulnerabilities in unseen scenarios.
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Hence, our contributions in this paper are threefold:

– We provide an evaluation of CodeBERT and CodeT5 for vulnerability-focused
program repair, covering a diverse set of 6 datasets across multiple program-
ming languages.

– We establish benchmarks for model performance in generating vulnerability
patches, serving as a foundation for evaluating pre-trained models in dataset-
driven vulnerability patching scenarios.

– We identify key limitations in model generalization, particularly the chal-
lenges of fine-tuning and performance on out-of-distribution datasets.

2 Related Work

Software vulnerabilities refer to security gaps or defects within code that can be
leveraged by malicious actors to compromise systems [33]. One notable example
is the buffer overflow vulnerability, which arises when a program tries to write
more data into a buffer than it can hold, leading to the overflow spilling into
neighboring memory areas. This can allow attackers to inject and execute harm-
ful code [18]. As these vulnerabilities grow more complex, they pose substantial
obstacles to developing and deploying robust countermeasures.

While vulnerability detection has been extensively studied, significantly less
attention has been given to generating patches. Traditional static analysis tools
have long been used for detection, but their reliance on predefined rules often
makes it difficult to identify complex patterns [2]. In contrast, AI-driven meth-
ods have gained traction for their ability to process vast codebases and uncover
intricate security flaws. Models like CodeBERT [13] and GraphCodeBERT [21]
have proven effective in analyzing source code, contributing to advancements in
vulnerability detection and assessment [16]. Additionally, large language models
(LLMs) such as OpenAI’s GPT-4, Meta AI’s Llama2, and Mistral AI’s Mis-
tral have demonstrated strong adaptability in tackling vulnerability detection
tasks [22].

Conversely, creating effective patches continues to be a significant challenge.
The majority of research on automated patch generation is centered on fixing
general code defects rather than targeting vulnerabilities directly. The subse-
quent sections will explore methodologies within this broader context.

2.1 Traditional Approaches to Code Repair

Automated code repair traditionally falls into two categories: heuristic-based
and constraint-based [20]. Heuristic methods search for patches that pass all
tests, often using transformation schemas for efficiency [29]. Approaches like
GenProg [28] and PAR [27] leverage genetic programming, while others use ran-
dom or deterministic strategies to refine the search.

Constraint-based methods employ symbolic execution [5] to guide patch gen-
eration by exploring multiple execution paths. Tools such as SemFix [31] and
Angelix [30] derive repair constraints, while techniques like Nopol [41] target
specific cases, such as repairing conditional expressions.
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2.2 ML-Based Code Repair

Machine learning has emerged as a key technique for automating code repair,
generating patches for software vulnerabilities and bugs. Early efforts relied on
Neural Machine Translation (NMT) with encoder-decoder architectures, such as
SequenceR [7] and CODIT [6], which used attention mechanisms to prioritize
critical regions during decoding.

More recently, transformer-based models have excelled at capturing long-
range dependencies and nuanced context, leveraging attention to focus on rele-
vant code segments. Ding et al. [10] highlighted their transformative potential,
paving the way for broader adoption in program repair.

Further expanding these approaches, large language models (LLMs) such as
CodeBERT [12] and CodeT5 [39] have shown promise for code-related tasks, ben-
efiting from pretraining on large code corpora. While prior work has explored
their capabilities in general code generation and repair, their effectiveness for
vulnerability-specific patching remains underexplored. This motivates our eval-
uation of both models in this context.

Nevertheless, patching vulnerabilities is distinct from fixing general bugs.
It requires highly contextual, security-focused modifications and robust gen-
eralization across complex scenarios. Current solutions emphasize fine-tuning
LLMs and advancing techniques to enhance adaptability for various datasets
and security-specific demands.

3 Methodology

In this section, we outline our experimental workflow, from dataset preparation
and preprocessing to splitting the data for training and testing, followed by
model selection and fine-tuning strategies.

3.1 Dataset Preparation and Pre-processing

For this study, we collected six publicly available datasets containing code sam-
ples with known vulnerabilities and their corresponding patches. These datasets
comprises of multiple programming languages, including Go, Java, PHP, and
C, ensuring diverse code structures and vulnerability patterns. The inclusion of
diverse datasets allowed us to evaluate the models’ ability to generalize across
varied programming contexts. Details about these datasets, including their ref-
erences are provided in Section 4.1, offering a comprehensive overview of their
sources. This diversity in datasets not only enhances the robustness of our eval-
uation but also reflects real-world scenarios where vulnerabilities span multiple
languages and coding paradigms.

We preprocessed the raw datasets to standardize their structure and enhance
model compatibility. Given the noise in real-world vulnerability datasets [14,26],
our preprocessing aimed to reduce inconsistencies and improve data quality,
as emphasized in studies on noisy datasets [25,15]. By ensuring uniformity, we
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created a robust foundation for reliable model training and evaluation. These
steps were critical for noise reduction and dataset preparation.

i. Token Length Filtering. Code exceeding 512 tokens was truncated/ex-
cluded due to model limits.

ii. Comment Removal. Language-specific regex removed comments, focusing
on functional code.

iii. Normalization. Fixed formatting inconsistencies (whitespace, line breaks)
for uniform datasets.

Table 1: Datasets

Dataset Irows Rtok. Rcomm. Rnorm. Trows

Go 1,472 551 357 0 921
PHP 6,696 335 4,923 1 6,360
MegaVul_C_2023 17,975 3,147 0 302 14,526
MegaVul_C_2024 17,975 3,147 0 302 14,526
Vul4J 1,790 3 0 0 1,790
CodeParrot 69,420 19,420 1,505 0 50,000

3.2 Training and Testing Split

The datasets were partitioned into 85% for training and 15% for testing, a
widely adopted ratio that provides a robust balance between model learning
and evaluation [42]. This split ensures sufficient data for effective training while
reserving enough samples to yield meaningful test results. To avoid data leak-
age and maintain the integrity of the evaluation, all overlapping or duplicate
instances were excluded.

3.3 Model Selection and Fine-Tuning

We utilized and fine-tuned CodeBERT and CodeT5 for vulnerability patching,
leveraging their strengths in code understanding and generation. CodeBERT,
tailored for programming tasks, adapted to detect vulnerabilities and their fixes,
while CodeT5, optimized for code generation, improved handling diverse code
structures. Despite alternatives like TFix, these models were chosen for their
versatility, robustness, and real-world applicability.

4 Experimental Setup

In this section, we detail the computational environment and methodologies used
for training and evaluating our models on a range of vulnerable code scenarios.



6 Zanis Ali Khan, Aayush Garg, and Qiang Tang

Table 2: Accuracy Scores

CodeBLEU CrystalBLEU

Dataset CodeBERT CodeT5 CodeBERT CodeT5

Go 0.7641 0.6499 0.6557 0.5264
PHP 0.7351 0.6924 0.4624 0.3727
MegaVul_C_2023 0.8396 0.8549 0.7893 0.8131
MegaVul_C_2024 0.8395 0.8549 0.7893 0.8131
Vul4J 0.3737 0.9373 0.1229 0.8985
CodeParrot 0.997 0.9973 0.9595 0.9603

All experiments were conducted on a High-Performance Computing (HPC) clus-
ter with nodes featuring 2.20GHz Intel Xeon Silver 4210 processors and NVIDIA
Tesla V100-PCIE-32GB GPUs. Model training and evaluation were performed
using the PyTorch 2.0.1 framework with CUDA 12 compatibility.

4.1 Datasets

To address the research questions outlined in Section 5, we leveraged publicly
available datasets that contain comprehensive collections of vulnerable source
code along with their corresponding fixed versions, which served as our ground
truth. Specifically, we utilized six datasets, including Go and PHP 1, MegaVul_C_2023,
and MegaVul_C_2024 2 [32], Vul4J3[4], and also CodeParrot 4. These datasets
encompass a variety of programming languages, including C, Java, Go, and PHP,
offering a well-rounded foundation for evaluation. Prior to their use, we imple-
mented preprocessing steps as outlined in Section 3.1

Table 1 reports on the size of our datasets, in terms of the number of rows
(Irows), rows affected by tokenization (Rtok.), rows affected by comment removal
(Rcomm.), rows affected by normalization (Rnorm.), and the total number of rows
remaining after pre-processing (Trows.).

4.2 DL Models

For vulnerability patching, we employed CodeBERT [12] and CodeT5 [39], widely
used for code analysis and vulnerability detection due to their strong perfor-
mance in handling code semantics and structure.

CodeBERT [12] bridges programming and natural languages, enhancing tasks
like code completion, summarization, and vulnerability detection. Built on a
transformer architecture, it captures syntactic and semantic relationships from

1 Go and PHP–https://doi.org/10.5281/zenodo.13870382
2 MegaVul_C_2023, and MegaVul_C_2024–https://github.com/Icyrockton/
MegaVul

3 Vul4J–https://github.com/tuhh-softsec/vul4j
4 https://huggingface.co/datasets/codeparrot/github-code-clean

https://doi.org/10.5281/zenodo.13870382
https://github.com/Icyrockton/MegaVul
https://github.com/Icyrockton/MegaVul
https://github.com/tuhh-softsec/vul4j
https://huggingface.co/datasets/codeparrot/github-code-clean
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code–language pairs, enabling precise vulnerability identification and remedia-
tion at scale.

CodeT5 [39] is a T5-based model for code generation and understanding,
excelling in vulnerability detection and patching. It generates context-aware
patches, preserves code intent, and supports multiple languages. Pre-trained on
extensive programming data, it performs well on benchmarks, improving soft-
ware security and code quality. It also preserves semantics in decompilation,
advancing vulnerability repair frameworks [40].

4.3 Evaluation Metrics

We evaluated the LLMs using CrystalBLEU [11] and CodeBLEU [37]. Crystal-
BLEU refines BLEU [35] by addressing n-gram limitations in programming lan-
guages, focusing on trivially shared n-grams for better code evaluation. Code-
BLEU enhances BLEU by combining n-gram matching with AST-based struc-
tures and semantic data flow, making it ideal for assessing code quality. Together,
these metrics provide accurate evaluations by considering both syntactic and se-
mantic aspects of generated code.

5 Results

In this section, we present our findings, focusing on how effectively CodeBERT
and CodeT5 generate accurate patches for both known and unknown vulnera-
bilities across diverse datasets.

5.1 RQ1: How effectively do CodeBERT and CodeT5 generate
accurate patches for known vulnerabilities across diverse
datasets?

In this research question, we evaluated the effectiveness of CodeBERT and
CodeT5 in generating patches by fine-tuning them on the same dataset. Our
analysis spans six datasets across four programming languages, following the
methodology outlined in Section 3.2. Table 2 displays the CodeBLEU, and
CrystalBLEU scores of CodeBERT and CodeT5 across six datasets used in our
evaluation. Examining the performance of both models on these datasets reveals
key insights into how pre-training data diversity and model architecture impact
the models’ effectiveness in vulnerability patching tasks. CodeT5 consistently
outperforms CodeBERT in VUL4J and CodeParrot datasets, with less difference
on MegaVul_C_2023 and MegaVul_C_2024 datasets but still demonstrates a
clear advantage over CodeBERT when evaluated using both CodeBLEU and
CrystalBLEU accuracy scores. This result aligns with the fact that CodeT5 has
been pre-trained on diverse data that spans a variety of programming languages
and textual formats, enabling it to capture more generalized patterns and nu-
ances in code. On Go, and PHP, CodeBERT performs better than CodeT5 using
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(a) CodeBLEU for CodeBERT

(b) CrystalBLEU for CodeBERT

Fig. 1: Heatmaps for CodeBERT
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(a) CodeBLEU for CodeT5

(b) CrystalBLEU for CodeT5

Fig. 2: Heatmaps for CodeT5
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CodeBLEU and CrystalBLEU metrics. By analyzing these two datasets, we ob-
served that they often contain incomplete functions or isolated snippets lacking
full context. This could potentially lead to lower performance for CodeT5, as
it relies on contextual understanding from diverse sources that might not align
well with fragmented or incomplete code. Conversely, CodeBERT, which is also
trained on a broad variety of programming languages, may still benefit from its
fine-tuned focus on code structure, making it more adaptable to such fragments.

These findings suggest that CodeBERT’s architecture might be inherently
more robust when handling incomplete or context-limited code, a factor that
could contribute to its better performance on Go and PHP. Moreover, despite
CodeBERT generally being outperformed by CodeT5, lacking the extensive pre-
training diversity of CodeT5, can still achieve near-competitive results in certain
domains, particularly for language-specific tasks. This observation underscores
the need for further investigation to better understand the interplay between
dataset characteristics and metric sensitivity, rather than drawing generalized
conclusions about the performance of CodeBLEU or CrystalBLEU.

Our results highlight the benefits of model diversity in deep learning-based
vulnerability patching. CodeT5’s broad pre-training excels on datasets with com-
plex vulnerabilities, while CodeBERT’s focused design performs well on datasets
with more traditional, syntactically constrained samples. These insights show
that model choice should depend on dataset characteristics. CodeBERT’s sim-
pler architecture likely makes it less reliant on context, while CodeT5 handles
diverse inputs more effectively. Thus, while CodeT5 is suited for complex, varied
data, CodeBERT is valuable in environments with incomplete or non-standard
code snippets.

5.2 RQ2: How effectively do CodeBERT and CodeT5 generate
accurate patches for unknown vulnerabilities across diverse
datasets?

Figures 1 and 2 show the results for RQ2, where we evaluated the fine-
tuned CodeBERT and CodeT5 models. For each model, we fine-tuned them
on one dataset and tested their performance on two types of datasets: (1) the
same dataset used for fine-tuning (in-distribution testing) and (2) all remain-
ing datasets that were not used during fine-tuning (out-of-distribution testing).
This setup allowed us to analyze whether fine-tuning pre-trained models (i.e.,
CodeBERT and CodeT5) on high-quality datasets enhances their ability to de-
tect vulnerabilities, including previously unknown ones. Specifically, we aimed
to determine if fine-tuning improves the models’ generalization capabilities com-
pared to their pre-trained versions, both on datasets they were trained on and
on unseen datasets.

In Section 5.1, we demonstrated the performance of pre-trained models (Code-
BERT and CodeT5) in detecting vulnerabilities accurately on datasets they were
trained or fine-tuned on. For RQ2, we extended this analysis to evaluate their
performance on both in-distribution and out-of-distribution datasets. From Fig-
ure 1 and Figure 2, we observe that both models perform significantly better on
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in-distribution datasets, with almost similar results and only minor percentage
differences compared to their performance in Section 5.1 or RQ1. This behavior
is expected, as fine-tuning allows models to adapt to the specific characteristics
of the training data, leading to higher accuracy on familiar datasets.

However, when tested on out-of-distribution datasets, the models exhibit a
noticeable drop in accuracy. Notably, when a model trained on a specific pro-
gramming language is tested on the same language—for example, trained on
Megavul_C_2023 and tested on Megavul_C_2024—the accuracy remains high.
A similar trend is observed for Vul4J and CodeParrot, as both are Java-based
datasets. In contrast, for CodeBERT, training on Vul4J and testing on Vul4J re-
sults in lower accuracy. This is due to the same reason mentioned in Section 5.1.
These findings suggest that while fine-tuning enhances performance on datasets
similar to the training data, it does not generalize well to entirely new datasets.

Additionally, the models exhibit non-deterministic behavior (e.g., small vari-
ations in accuracy even on in-distribution datasets), which is common in large
language models (LLMs) like CodeBERT and CodeT5. This variability can be
attributed to factors such as randomness in weight initialization, optimization
processes, or inherent fluctuations in the models’ predictions.

6 Discussion

Fine-tuning on well-characterized datasets substantially boosts CodeBERT and
CodeT5 performance in in-distribution tests. However, this advantage drops
sharply on out-of-distribution data, especially when the code differs in language
or structure. Such declines reflect overfitting, as models learn dataset-specific
signals rather than broader security principles.

Additionally, we observe sporadic variability across executions, caused by
random weight initialization and hyperparameter sensitivity. Repeated train-
ing can alleviate these fluctuations, but consistent checkpointing and parameter
tuning remain critical for stable outcomes.

A key lesson is that diverse datasets foster more generalizable repair models.
Narrow data coverage may yield high accuracy for certain vulnerability types but
struggles with unseen threats. Beyond standard fine-tuning, future work could
explore meta-learning, multi-task strategies, and data augmentation to improve
cross-domain robustness and ensure patches address genuine security concerns.

7 Threats to Validity

Construct Validity. We evaluate “correct” patches using CodeBLEU and Crys-
talBLEU, which primarily gauge syntactic and limited semantic cues. Although
these metrics are well-suited for code-focused tasks, they may overlook deeper se-
curity implications and potential exploit vectors. Moreover, the labeled “patched”
instances within our datasets may not fully represent truly secure fixes, raising
the risk of overestimating model performance.
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Internal Validity. Our findings are sensitive to model randomness (e.g.,
weight initialization) and hyperparameter settings. Even minor fluctuations in
these variables can skew comparative outcomes. Additionally, data preprocessing
steps such as token truncation and comment removal may eliminate vital context
needed to generate security-relevant patches. These factors, if not uniformly
controlled, limit the consistency and interpretability of our experimental results.

External Validity. While this work involves six datasets in four languages,
real-world projects frequently rely on specialized libraries and domain-specific
coding styles. The observed performance drop on out-of-distribution datasets
highlights limited cross-domain generalizability. To enhance broader applicabil-
ity, future work should consider more diverse datasets and investigate meta-
learning approaches that better capture variability across language ecosystems
and security contexts.

8 Conclusion

Our findings illustrate the promise of large language models for automated vul-
nerability repair while underscoring significant generalization challenges. Code-
BERT and CodeT5 both excel when confronted with familiar vulnerability pat-
terns, yet exhibit performance gaps on unseen datasets and in cross-language
contexts. Achieving robust, production-grade vulnerability repair will demand
more than simple fine-tuning; it calls for richer datasets, more advanced train-
ing paradigms, and continuous adaptation to evolving security threats. By ad-
dressing these gaps, future research and practice can more confidently integrate
automated patch generation into real-world software development pipelines.

9 Data Availability

In support of Open Science, the source code and datasets used in our study are
publicly available on Zenodo [24].
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