
Learning To Predict Vulnerabilities From
Vulnerability-Fixes: A Machine Translation

Approach
Aayush Garg

aayush.garg@uni.lu
University of Luxembourg

Maxime Cordy
maxime.cordy@uni.lu

University of Luxembourg

Renzo Degiovanni
renzo.degiovanni@uni.lu

University of Luxembourg

Mike Papadakis
michail.papadakis@uni.lu
University of Luxembourg

Matthieu Jimenez
matthieu.jimenez@uni.lu

University of Luxembourg

Yves Le Traon
yves.letraon@uni.lu

University of Luxembourg

Abstract—Vulnerability prediction refers to the problem of
identifying the system components that are most likely to be
vulnerable based on the information gained from historical data.
Typically, vulnerability prediction is performed using manually
identified features that are potentially linked with vulnerable
code. Unfortunately, recent studies have shown that existing
approaches are ineffective when evaluated in realistic settings due
to some unavoidable noise included in the historical data. To deal
with this issue, we develop a prediction method using the encoder-
decoder framework of machine translation that automatically
learns the latent features (context, patterns, etc.) of code that
are linked with vulnerabilities. The key idea of our approach
is to learn from things we know, the past vulnerability fixes
and their context. We evaluate our approach by comparing
it with existing techniques on available releases of the three
security-critical open source systems (Linux Kernel, OpenSSL,
and Wireshark) with historical vulnerabilities that have been
reported in the National Vulnerability Database (NVD). Our
evaluation demonstrates that the prediction capability of our ap-
proach significantly outperforms the state-of-the-art vulnerability
prediction techniques (Software Metrics, Imports, Function Calls,
and Text Mining) in both recall and precision values (yielding
4.7 times higher MCC values) under realistic training setting.

I. INTRODUCTION

Software vulnerabilities are a major concern in our ultra-
connected world. A single occurrence has the power to harm
millions of lives, e.g., through data leakage or via interruption
of critical services. In 2017, the overall cost of cybercrime on
the global economy was estimated to $600 billion [15].

A software vulnerability is usually defined as a flaw, a bug,
or a weakness in a software system that can be leveraged
by an attacker to steal information, gain access to a system
or render it unavailable. While vulnerabilities can be thought
of as specific types of software defects (or bugs), there are
subtle and significant differences that make their identification
considerably more complex and challenging than the problem
of finding bugs [30], [39].

Firstly, their relatively small number in comparison to
defects, reduces a lot of knowledge that one can build from
the analysis of historical data. Secondly, their identification

requires an attacker’s mindset [28], which developers or code
reviewers may not possess. Lastly, the continuous growth of
codebases makes it difficult to investigate them entirely and
track all code changes. For example, the Linux kernel, one
of the projects with the highest number of publicly reported
vulnerabilities, reached 27.8 million LoC (Lines of Codes) in
the beginning of 2020.

Vulnerability prediction approaches were proposed to tackle
these challenges and reduce the amount of effort that de-
velopers and code reviewers have to put on when testing
or reviewing code to find vulnerabilities. These methods
traditionally rely on a set of features and/or code properties
that associate with vulnerabilities. For instance, the presence
of vulnerabilities has been linked to high code churn [34], to
the use of specific library imports and function calls [29], and
the frequency of suspicious code tokens [39]. Unfortunately,
building models around such features is challenging due to the
small number of available vulnerability code instances, which
limit the learning ability of the predictors [49].

Another important problem is the working assumption
of previous work, which is that every component that has
no vulnerabilities declared, at training time, is indeed non-
vulnerable [24]. This assumption results in unavoidable noise
in the training data and makes existing approaches perform
poorly under realistic settings (training only on vulnerability
instances available at release time) [24]. This indicates the
need for more robust vulnerability prediction techniques.

We advance in this direction by developing a method that
learns from validated data, i.e., we train only on the com-
ponents that are known to be vulnerable and leave aside the
(supposedly) non-vulnerable components. This way, we do not
make any assumption on non-vulnerable data and bypass the
key problem faced by previous work. To do so, we rely on the
simple, language-agnostic but powerful machine translation
technique [8], which we train on pairs of vulnerable and fixed
component versions that are available at every project release
time. The trained models can then be used to predict the

ar
X

iv
:s

ub
m

it/
35

26
77

2
 [

cs
.S

E
]

 2
1

D
ec

 2
02

0

likelihood of a code fragment to be vulnerable.
Our approach learns from vulnerability fixes, learn transfor-

mations, by capturing the features related to the differences
between vulnerable and fixed components, i.e., the actual
fix context. Therefore, predictions are guided by the actual
points of interest (the diff points) in the vulnerable code
where the transformations should happen. This means that
when our technique suggests a modification on some code
part, this is a good indication that the code has characteristics
similar to a vulnerable one (used for training). Moreover,
machine translation based approaches have been shown to be
effective in various fields such as introducing artificial faults
(mutants) [40], automatically producing bug fixes [41], and
identifying code clones [44]. Thus, machine translation based
approach is a promising candidate for vulnerability prediction.

We empirically assess the effectiveness of our approach on
available releases of three security-critical open source systems
(Linux Kernel, Wireshark and OpenSSL) taken from the study
of Jimenez et al., [24]. Our evaluation demonstrates that the
proposed prediction approach significantly outperforms the
current state-of-the-art vulnerability prediction methods under
both “clean” and “realistic” training data settings.

In particular, our results show that in the case where we
train with clean data (case adopted by most of the previous
work [24]), our approach improves all prediction performance
metrics at the same time, i.e., an improvement of 9% in pre-
cision, 135% in recall, 81% in F-measure, and 41% in MCC.
In addition to these metrics, we also evaluate our approach on
predicting “novel” vulnerable components specifically. This is
a new metric that we introduce in this paper to help evaluate
the extent to which vulnerability prediction generalizes. Under
realistic training settings where data include some unavoidable
noise [24], the average improvement achieved by our approach
is even more remarkable (with a recall more than 22 times
higher than the baselines).

In summary, we make the following contributions:
1) We present a vulnerability prediction method using ma-

chine translation.
2) We demonstrate that our approach significantly outper-

forms the existing ones through a large empirical study.
3) We corroborate that our approach remains robust when

trained in realistic data settings that include unavoidable
noise, where previous methods fail [24].

II. BACKGROUND

A. Vulnerabilities

A security vulnerability as defined by the Common Vul-
nerability Exposures (CVE) [1] is “a mistake in software
that can be directly used by a hacker to gain access to
a system or network”. Those mistakes are usually due to
the inadvertence of a developer or insufficient knowledge of
defensive programming. Still, vulnerabilities are of critical
importance for software vendors that often offer bounties
to find them and prioritize their resolution over other (less
harmful) bugs to reduce potential business impact.

To help software engineers to make sure that their software
is not vulnerable and build more knowledge on vulnerabili-
ties, vulnerabilities are usually reported in publicly available
databases. The National Vulnerability Database(NVD) [4]
supported by the U.S. government is an example of such
a database. It contains information on vulnerabilities, their
severity, type, links to additional information, and is built on
top of the CVE List dictionary that links each publicly reported
vulnerability to a unique identifier.

B. Vulnerability Prediction Modeling

Prediction modeling aims at learning statistical properties of
interest based on historical data. While the resulting models
are usually suitable only for the project/application on which
they have been trained on, the learning process is generic
and applies on a specific set of features that associate with
the property to predict. In the context of vulnerabilities, a
prediction model can be used to classify software components
as likely or unlikely vulnerable. Then, this information can be
used to support the code review process. This task is somehow
related to defect prediction, yet due to the sparsity of available
examples, it is usually harder to predict vulnerabilities than
defects [36].

C. Granularity Level

Depending on the target and on available data, prediction
models can offer different granularity levels, such as line, func-
tion, component, etc. However, the granularity level should
ultimately correspond to what the developers or code reviewers
need. Thus, different granularities offer different tradeoffs. For
instance, the line-level granularity seems appealing, but pro-
duces many false positives and lacks contextual information.
On the other end of the spectrum, module-level granularity
produces accurate results with the entire relative context to
perform the inspection but only slightly reduces the inspection
effort. A commonly accepted tradeoff is the component (file)
level granularity as it has been vetted by Microsoft developers
in a study from Morrison et al., [28] and is used by most
existing approaches.

Some studies also aim at the function level prediction [37],
[48], but without providing any evidence on its utility. We
thus consider the component level (i.e. code files) granularity,
as it has been found to be actionable for industrial use [28]
and provides a baseline for comparing our results with those
reported by the relevant literature [24].

D. Machine Translation

We suggest a novel approach for vulnerability prediction
using machine translation. Machine Translation can be consid-
ered as a transformation function transform(X) = Y where
the input X = {x1 , x2 , . . . , xn} is a set of entities that rep-
resents a component to be transformed to produce the output
Y = {y1 , y2 , . . . , yn} which is a set of entities that represent
a transformed (desired) component. In the training phase, the
transformation function learns on the example pairs (X ,Y)
available in the training dataset. In our context, X contains

vulnerable entities (representing a vulnerable component) and
Y contains fixed entities (representing the corresponding fixed
component). The transformation function can be trained not
to transform, i.e., to produce the same output as the input
in cases where Y is the desired entity-set. This is achieved
by training the function on the example pairs (Y, Y), i.e.
transform(Y) = Y . In the case of vulnerability prediction
modeling, this learned transformation will be used as our
prediction model.

Among the several machine translation algorithms that have
been suggested over the past years, we use the RNN Encoder-
Decoder which is established and is used by many recent
studies [38], [40].

E. RNN Encoder-Decoder architecture

The RNN Encoder-Decoder machine translation is com-
posed of two major components: an RNN Encoder to encode
a sequence of terms x into a vector representation, and
an RNN Decoder to decode the representation into another
sequence of terms y. The model learns a conditional dis-
tribution over an (output) sequence conditioned on another
(input) sequence of terms: P (y1; . . . ; ym|x1; . . . ;xn), where
n and m may differ. For example, given an input sequence
x = Sequencein = (x1; . . . ;xn) and a target sequence y =
Sequenceout = (y1; . . . ; ym), the model is trained to learn
the conditional distribution: P (Sequenceout|Sequencein) =
P (y1; . . . ; ym|x1; . . . ;xn), where xi and yj are separated
tokens. A bi-directional RNN Encoder [8] (formed by a
backward RNN and a forward RNN) is considered the most
efficient to create representations as it takes into account both
past and future inputs while reading a sequence [7].

III. APPROACH

The main objective of our approach is to automatically learn
what indicates vulnerabilities (without any features definition
and/or selection by human intervention) and use it to predict
the presence of vulnerabilities in unseen code.

The key idea of our method is to train a machine translator
(viz. an encoder-decoder sequence to sequence model) to
identify vulnerable code, by feeding it with vulnerable code
fragments and their corresponding fixes. Machine translators
have been successfully used to translate natural text from one
language to another, as they automatically recognize (i) the
features of the language (to be translated) and (ii) the required
translation (to the desired language). In our case, it is used to
automatically identify the features of vulnerabilities without
any investment of time and/or resources to define features.

It should be noted that we do not aim at fixing vulnerable
code, but rather at identifying vulnerable code instances. The
point here is that we use the translator to indicate the presence
of vulnerabilities without considering what it produces as fixes.
In other words, we leverage the ability of the translators to
learn the vulnerabilities’ context and not their exact location.
We assert that since vulnerable code instances are scarce, the
information gained from historical data is inevitably partial and

incomplete. Therefore, it can be used to indicate the presence
of vulnerabilities but not their actual location/pattern.

After training, one can input unseen code (which may or
may not contain vulnerabilities) into the translator to check
whether it is likely to have vulnerabilities. If the translator
transforms the code then it can be concluded that the code
is likely vulnerable. To avoid many false positives (that the
translator transforms every input code fragment), we also train
it to not transform non-vulnerable code fragments. Thus, we
also feed it with input-output pairs, each of which is a copy
of the same non-vulnerable code.

Figure 1 shows a more detailed view of the training pro-
cess. Starting from vulnerable code components and their
fixes, it involves the following activities: 1) decompose the
components into code fragments; 2) identify which fragments
are responsible for the vulnerability; 3) produce abstracted
code fragments by removing irrelevant information (e.g. user-
defined names); 4) configure and train the machine translator.

A. Decompose Components into Code Fragment (Functions)

Our approach takes as input a set of vulnerable code com-
ponents together with their corresponding fixed components.
We target program functions in order to have a fine grained
information, while our predictions remain at the component
level to account for the context of the functions and cases
(vulnerability fixes) that can be fixes in different locations. A
code-fix can be an addition and/or removal and/or modification
of code. Since functions are the basic building blocks of a
program, we use them to establish a function-level mapping
between the vulnerable component and its fixed counterpart
(based on the function headers).

Thus, we extract all the functions from both the vulnerable
component and the fixed component and pair each before-
fix function with the corresponding after-fix function. The
functions that cannot be paired, i.e., have no counterpart in
the other component, are discarded. This can happen due to
the creation and/or deletion of function to fix a vulnerability,
e.g., an additional function in the after-fix component which is
not present in the before-fix component or vice-versa. Then,
for each function pair, we keep the before-fix copy of the
function (which can be vulnerable or non-vulnerable) and the
after-fix function (which is non-vulnerable).

B. Categorize Functions as Vulnerable or Non-Vulnerable

We consider as vulnerable, following the current practice in
this line of work, any function which was modified during the
fix, i.e., the before-fix copy is different from its corresponding
after-fix copy. Otherwise, we consider the function as non-
vulnerable (not vulnerable to the specific vulnerability). When
comparing before-fix to after fix copies, we ignore irrelevant
syntactical changes, e.g., additional blank spaces and new
lines. If there remain syntactical differences between the
before-fix copy and the after-fix copy, we label the former
as vulnerable and the latter as fixed. Otherwise, we keep only
one of the two copies and label it as non-vulnerable.

FUNCTION-PAIRS

BEFORE FN 1 AFTER FN 1

BEFORE FN 2 AFTER FN 2

BEFORE FN 3 AFTER FN 3

BEFORE FN 4 AFTER FN 4

BEFORE FN 5 AFTER FN 5

BEFORE FN n AFTER FN n

CHANGED FUNCTIONS

(PAIRS)

VUL FN 2 FIXED FN 2

VUL FN 5 FIXED FN 5

UNCHANGED

FUNCTIONS

(NON-VULNERABLE)

FN n

CODE FILES

BEFORE

FIX

(VUL)

AFTER

FIX

(FIXED)

FN 1

FN 3

A
B

S
T

R
A

C
T

IO
N

PAIRS

FIXED

SEQUENCES

VULNERABLE

SEQUENCES

VUL SQ 1

NON-VULNERABLE

SEQUENCES

NONVUL SQ 1

NONVUL SQ 2

NONVUL SQ n

FIXED SQ 1

VUL SQ n FIXED SQ n

A
S

T
 D

IF
F

SEQUENCE PAIRS

VUL 1

NVUL1

NVUL2

NVULn

FIXED 1

VUL n FIXED n

NVUL1

NVUL2

NVULn

M
A

C
H

IN
E

 T
R

A
N

S
L

A
T

O
R

E
N

C
O

D
E

R
-D

E
C

O
D

E
R

F
R

A
M

E
W

O
R

K

FIXED 1 FIXED 1

FIXED n FIXED n

Fig. 1: Training process: Extracted functions from components are compared (before-fix with after-fix) and categorized in
Changed (Vuln.–Fixed pair) and Unchanged functions. Further, these functions are abstracted and arranged in single sentences
to get sequences (Vuln., Fixed, and Non-Vuln.). These sequence pairs are used to train the machine translation model.

C. Abstract the Irrelevant Information

A major challenge in dealing with raw source code is the
huge vocabulary created by the abundance of identifiers and
literals used in the code. Vocabulary, on such a large scale,
hinders the goal of learning transformations of code as a neural
machine translation task [40]. Thus, to reduce vocabulary size,
we transform the source code of each function into an abstract
representation by replacing user-defined entities with re-usable
IDs.

Figure 2 shows a code snippet from a real function (Fig-
ure 2a) converted into its abstract representation (Figure 2b).
The purpose of this abstraction is to replace any reference
to user-defined entities (function name, type, variable name
and string literal) by IDs that can be reused across functions
(thereby reducing the vocabulary size). Thus, our abstraction
approach first detects identifiers and string literals before
replacing them with unique IDs. Additionally, comments and
annotations are removed.

New IDs follow the regular expression
(F|T|V|L)_(num)+, where num stands for numbers
0, 1, 2, . . . assigned in a sequential and positional fashion
based on the occurrence of that entity. All the entities - user-
defined Function names, Type names, Variable names, and
String Literals are replaced with F_num, T_num, V_num,
and L_num, respectively. Thus, the first function name found
receives the ID F_1, the second function name receives the
ID F_2, and so on. If any of these entities appear multiple
times in a function, it will be replaced with the same ID.

Each function (pair) is abstracted in isolation (yielding
abstracted function code), which means that the same IDs
can be reused across functions without impacting our machine
translation approach. Thus, ID references are not preserved
across functions (e.g., V_1 may refer to two different variable
names from one function to another), which is key to reduce
vocabulary size. For example, the name of the first function
called in any pair is replaced with the ID F_1, regardless of
the original function name.

In case of vulnerable functions, The before-fix copy is
abstracted first and then the after-fix copy. The IDs are
shared between the two copies (before-fix and after-fix) of the

functions and new IDs are generated only for newly found
Function names, Type names, Variable names, and String
Literals.

Finally, any abstracted function code is rearranged in a
single sentence to represent a sequence of space-separated en-
tities (the representation supported by the machine translator).
The sequences generated from vulnerable (before-fix), fixed
(after-fix) and non-vulnerable functions are named vulnerable,
fixed and non-vulnerable sequences, respectively. To limit the
computation cost involved when training the translator, large
sequences are split into multiple sequences of no more than
50 tokens each.

D. Build the Machine Translator

To build our machine translator, we train an encoder-
decoder model that can transform a sequence (input to the
model) to a desired sequence (output of the model). A repre-
sentation of a sequence is similar to a sentence in a natural
language that consists of words separated by spaces and ends
with a full stop. Instead of words and full stop character, a
sequence has tokens and the newline character. Thus, we train
the encoder-decoder by feeding it with pairs of sequences.
More precisely, we use three types of pairs: (i) each vulnerable
sequence with its corresponding fixed sequence; (ii) each fixed
sequence paired with itself; (iii) each non-vulnerable sequence
paired with itself. The last two types of sequence pairs are
essential to make the model learn to produce the same output
as the input when fed with fixed or non-vulnerable sequences.
Thereby, our approach avoids raising many false positives (i.e.
wrongly predicting that some non-vulnerable sequences are
vulnerable) while learning only from clean data (it does not
use “non-vulnerable” components). In particular, learning not
to modify fixed sequences helps the model differentiate vul-
nerable before-fix code from the corresponding (syntactically
similar) fixed code.

E. Predict Vulnerabilities

To predict whether or not the unseen component contains
vulnerabilities, we first decompose it into sequences following
a similar process as depicted in Figure 1. Then, we feed the
resulting sequences into the machine translator, yielding as

1 void dev_load (struct net* netw, const char* name) {
2 struct net_device* dev;
3 rcu_read_lock();
4 dev = dev_get_by_name_rcu(netw , name);
5 rcu_read_unlock();
6 if (!dev && capable(CAP_NET_ADMIN))
7 request_module("%s", name);
8 }

(a) Actual Function

1 void F_1 (struct T_1 * V_1 , const char * V_2) {
2 struct T_2 * V_3 ;
3 F_2 () ;
4 V_3 = F_3 (V_1 , V_2) ;
5 F_4 () ;
6 if (! V_3 && F_5 (V_4))
7 F_6 (L_1 , V_2) ;
8 }

(b) Abstracted Function
Fig. 2: Abstraction: Actual Functions (left) are abstracted by replacing user-defined Function names, Type names, Variable
names, and String Literals to F num, T num, V num, and L num, respectively to achieve Abstracted Function (right).

many output sequences. If one (or more) output sequences
returned by the model was modified by the machine translator,
we conclude that the component contains a vulnerability.
Otherwise, we conclude that the component is non-vulnerable.

IV. EXPERIMENTAL EVALUATION

A. Research Questions

Our approach aims to support code reviews by predicting
vulnerable components in a new release based on the informa-
tion learned from previous (historical) data, i.e., the previous
project release. Therefore, our first research question regards
the prediction performance of our technique. We evaluate this
by training on all available vulnerabilities of one release and
testing on the next release (for all available version pairs).
Thus, we ask:

RQ1 How effective is our approach in predicting vulnerable
components?

After assessing the prediction performance of our approach,
we turn our attention on the existing state-of-the-art tech-
niques. Hence, we investigate:

RQ2 How effective (in predicting vulnerable components) is
our approach in comparison to the current state-of-the-
art techniques?

In our approach, we train a model on the vulnerabilities
of a release and test the trained model for the prediction
of vulnerable components in the next release. We thus may
have the knowledge that a component is vulnerable in a given
release irrespective of the vulnerability detection date. As
this vulnerable component may remain unfixed and repeat
in the next version, it is essential to assess the learning
potential of our trained models by evaluating the performance
of existing vulnerable component prediction and comparing
with the state-of-the-art techniques. Nonetheless, it is also
imperative to assess the generalization capability of our trained
models by evaluating their performance in predicting novel
(unseen) vulnerable components and comparing with the state-
of-the-art techniques. Hence, we ask:

RQ3 How effective is our approach in predicting novel and
existing vulnerable components?

Until now, we considered that all vulnerable components of
a given version are in the training set, as done by most of
vulnerability prediction studies, e.g., [36], [48]. This analysis
provides indications on what is the potential prediction ability
(actual limits in predictions) of the approaches when assuming
clean training data settings. Unfortunately, in practice, such
data are unavailable and inflate the actual performance of the

prediction models [24]. The actual performance in realistic
settings is much lower due to the real-world labelling issues
[24], i.e., vulnerabilities are frequently reported at a much later
time than they are actually introduced, a fact that misleads the
predictions (causing the classifiers to learn as non-vulnerable,
the components that are in fact vulnerable). Thus, it is im-
perative to study realistic training settings, where a prediction
model is trained only on those vulnerabilities that were de-
tected between the release date of each version till the release
date of the next version (for which we predict vulnerabilities).
Our approach also does not make any assumption related to
non-vulnerable components, thereby having the potential of
being less sensitive to the real-world labelling issues. For
these reasons, we also evaluate the approaches under realistic
training settings. Therefore we ask:

RQ4 How effective (in predicting vulnerable components) is
our approach in comparison to the current state-of-the-
art technique under realistic training settings?

B. Data

To answer the research questions, we need projects with
plenty of releases and a sufficient amount of historical data
in order to train. Therefore, we consider three large security
intensive open-source software systems in our evaluation –
the Linux Kernel, the OpenSSL library, and the Wireshark
tool. These systems are widely used, mature, and have a long
history of releases and vulnerability reports, which is needed
to perform release-based experiments.

Linux Kernel [3] is an operating system, integrated into
billions of systems and devices, such as Android. Linux is one
of the largest open-source code-bases and has a long history
(since 1991), recorded in its repository. It is relevant for our
evaluation since it has many security aspects and is among
the projects with a higher number of reported vulnerabilities in
NVD. OpenSSL [5] is a library implementing the SSL and TLS
protocols, commonly used in communications. It is of critical
importance as highlighted by the Heartbleed vulnerability,
which made half of a million web servers vulnerable to
attacks [2]. Wireshark [6] is a network packet analyzer mainly
used for troubleshooting and debugging. The project is open
source and is relevant for the study because it is integrated
with most operating systems.

All the vulnerabilities (the vulnerable and fixed com-
ponents) of the systems are gathered by VulData7 [23].
FrameVPM [21] is a framework built to evaluate vulnerability
prediction models. It collects the code files from GitHub
repositories to train and evaluate prediction models. We use

TABLE I: For each system (Linux Kernel, Wireshark, and
OpenSSL) in our dataset, we report the total number of ver-
sions, average number of components and vulnerable compo-
nents in each version, and the ratio of vulnerable components.

System #Versions #Avg.Comp #Avg.Vuln.Comp %Vuln.
Linux Kernel 36 16456 456 3%
Wireshark 10 2012 134 7%
OpenSSL 10 664 59 9%

FrameVPM to gather the entire code-base of the systems
employed in the experiments. Table I provides the details of
our dataset.

C. Implementation and Model Configuration

During abstraction, we invoke the srcML tool [11] to convert
source code into an XML format including tags to iden-
tify literals, keywords, identifiers, and comments. This helps
in separating user-defined identifiers and string literals (the
largest part of the vocabulary) from the language keywords (a
limited set). Then, ID replacement is performed by a dedicated
procedure that we implemented. To check whether before-fix
copies and after-fix copies are different without considering
irrelevant characters (i.e., white spaces and new lines), we
input the XML produced by srcML into the Gumtree Spoon
AST Diff tool. It is to be noted that our approach is not bound
to the above-mentioned third-party tools. As an alternative, one
can use any software that can identify user-defined entities and
can check the difference while ignoring irrelevant characters.

We built our encoder-decoder model on top of tf-
seq2seq [14], a general purpose encoder-decoder framework.
To configure it, we learn on previous research applying ma-
chine translation to solve software engineering tasks (other
than vulnerability prediction), e.g. [40], [41]. Hence, we rely
on a bidirectional encoder as it generally outperforms unidirec-
tional encoder. We use a Long Short-Term Memory (LSTM)
network [19] to act as the Recurrent Neural Network (RNN)
cell, which was shown to perform better than the common
alternatives (simple RNNs or gated recurrent units) in other
software engineering prediction tasks [9], [33]. Bucketing
and padding are used to deal with the variable length of
the sequences. To strike a balance between performance and
training time, the combination used is 1-layer encoder and 2
layer-decoder both with 256 units.

To determine an appropriate number of training steps,
we conducted a preliminary study involving a validation set
(independent of both the training set and the test set that we
use in our experimental evaluation). There, we train the model
by iterations of 5,000 steps. At the end of each iteration, we
check whether the prediction accuracy on the validation set
improved. If that is the case, we pursue the training for another
iteration (otherwise, we stop). We found out that the model
stopped improving at 50,000 steps, which we use as the total
number of training steps. Note that this order of magnitude is
in line with previous research applying machine translation to
solve software engineering prediction tasks, e.g. [40].

D. Experimental Settings

Our experimental evaluation is designed to evaluate the
techniques under clean and realistic data settings during the
training phase. We train a model on each release and test the
trained model on the next release (future release) simulating
a typical release-based vulnerability prediction evaluation sce-
nario [24].

Clean Data Training - Used in RQs 1, 2 & 3: In
these settings, a prediction model is trained using all the
vulnerabilities (before-fix sequences transformation to after-fix
sequences) of a release of a system (Linux Kernel / OpenSSL
/ Wireshark). The trained models are evaluated based on their
predictions in the following release of the same system (e.g.,
trained on Linux Kernel release v4.0 and evaluated against
v4.1). The components of the following release are converted
into sequences that are input to the trained model to get the
output sequences. Then, our approach compares the output
sequences generated by the trained model with the input
sequences. A component is considered vulnerable if any of the
output sequences differ from the input sequences, otherwise
considered as non-vulnerable. This training-testing process is
repeated for all available releases. Since a model trained on
the last release of a project does not have a future release to be
evaluated against, for n releases of a project, (n–1) experiments
are performed, e.g., we performed 35 experiments (35 models
trained and evaluated) for the 36 releases of Linux Kernel.

Realistic Training - Used in RQ4: In contrast to the clean
data training settings, in realistic training settings we consider
the date of detection of a vulnerability. Based on the detection
date, a decision is taken whether the vulnerability is included
in the training dataset or not. A prediction model (of a system-
release) is trained using only those vulnerabilities that were
detected before the next release date. Then, the trained model
is evaluated for its prediction in the following release of the
same system.

E. Benchmarks for Vulnerability Prediction

To assess effectiveness, we compare our approach with the
state-of-the-art in vulnerability prediction. For this task, we
rely on FrameVPM [21], [24], a framework implementing a
collection of state-of-the-art techniques, to create and evaluate
the vulnerability prediction models based on the following
methods:

Software metrics: Complexity metrics have been extensively
used for defect prediction (e.g. [18]) and vulnerability predic-
tion (e.g. [35], [34], [10]). It is based on the idea that complex
code is difficult to maintain and test, and thus has a higher
chance of having vulnerabilities than simple code. Software
metrics’ vulnerability prediction model is trained on features
related to complexity and coupling (e.g., lines of code, cy-
clomatic complexity; nesting level of control constructs, etc);
code churn (added, modified and deleted lines in the history
of a component); and developer activity metrics (number of
commits, number of developers modifying a component, etc).

Text Mining: It considers a source code component as a
collection of terms associated with frequencies, also known as

Bag of Words (BoW), used for vulnerability prediction [31].
The source code is broken into a vector of code tokens, and
the frequency of each token is then used as the features to
build the vulnerability prediction model. Further improvements
have been performed to significantly improve its performance,
e.g., by pooling frequency values in different bins according
to particular criteria to discretize BoW’s features [25], [31].

Imports and Function Calls: The work of Neuhaus et
al. [29] is based on the observation that the vulnerable
components tend to import and call a particular small set of
functions. Thus, the features of this simple prediction model
are the components’ imports and function calls. Following the
suggested recommendations of FrameVPM, we use imports
and function calls as separate sets of features. It trains one
model based on imports and another model based on function
calls, thus implementing one model per set of features.

F. Performance measurement

A confusion matrix stores the correct and incorrect predic-
tions of the studied methods. Given a vulnerable component,
if it is predicted as vulnerable, then it is a true positive (TP);
otherwise, it is a false negative (FN). Given a non-vulnerable
component, if it is predicted as non-vulnerable, then it is a
true negative (TN); otherwise, it is a false positive (FP). The
confusion matrix is used to compute the Precision, Recall, and
F-measure scores, that quantitatively evaluate the prediction
accuracy of vulnerability prediction models.

The mentioned traditional metrics do not take into account
the true negatives and can be misleading, especially in the
case of imbalanced data. Hence, we complement these with
the Matthews Correlation Coefficient (MCC) [27], a reliable
metric of the quality of prediction models [32]. It is generally
regarded as a balanced measure that can be used even when
the classes are of very different sizes, e.g. in case of Linux
Kernel, 3% vulnerable components (positives) over 97% non-
vulnerable components (negatives). MCC is calculated as:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC returns a coefficient between 1 and -1. An MCC value of
1 indicates a perfect prediction, while a value of -1 indicates
a perfect inverse prediction i.e., a total disagreement between
prediction and reality. MCC equals to 0 indicates that the
prediction performance is equivalent to random guessing.

V. EXPERIMENTAL RESULTS

A. Prediction with Clean Training data (RQ1)

Table II records the results for every experiment performed
on the 56 releases (36 of Linux Kernel, 10 of Wireshark
and 10 of OpenSSL) we study. As mentioned earlier, here
the model is trained on a particular release and evaluated
against the following (next) release of the system. The scores
reported in the table correspond to the average and median of
the scores that our approach achieves for all releases of the
systems. Our approach obtained an overall average (median)

TABLE II: Prediction with clean training data (RQ1)

Release MCC F-measure Precision Recall
Linux Kernel

v3.0 0.704 0.864 0.841 0.89
v3.1 0.716 0.869 0.821 0.924
v3.2 0.751 0.884 0.857 0.914
v3.3 0.696 0.862 0.819 0.909
v3.4 0.729 0.875 0.84 0.913
v3.5 0.716 0.856 0.936 0.788
v3.6 0.738 0.878 0.861 0.897
v3.7 0.667 0.85 0.817 0.886
v3.8 0.778 0.893 0.915 0.873
v3.9 0.694 0.861 0.827 0.897
v3.10 0.765 0.89 0.884 0.895
v3.11 0.851 0.928 0.932 0.923
v3.12 0.761 0.888 0.878 0.898
v3.13 0.715 0.869 0.821 0.923
v3.14 0.853 0.929 0.929 0.929
v3.15 0.775 0.894 0.891 0.898
v3.16 0.802 0.905 0.919 0.892
v3.17 0.809 0.909 0.909 0.909
v3.18 0.811 0.908 0.93 0.888
v3.19 0.72 0.871 0.839 0.906
v4.0 0.876 0.939 0.964 0.915
v4.1 0.862 0.933 0.938 0.929
v4.2 0.771 0.883 0.955 0.821
v4.3 0.835 0.919 0.942 0.897
v4.4 0.824 0.916 0.907 0.926
v4.5 0.793 0.9 0.924 0.877
v4.6 0.788 0.9 0.876 0.926
v4.7 0.793 0.902 0.905 0.899
v4.8 0.827 0.917 0.914 0.921
v4.9 0.799 0.904 0.904 0.904
v4.10 0.791 0.899 0.921 0.879
v4.11 0.746 0.882 0.866 0.898
v4.12 0.777 0.891 0.93 0.855
v4.13 0.79 0.896 0.941 0.856
v4.14 0.802 0.905 0.913 0.897

Wireshark
v1.8.0 0.499 0.688 0.971 0.532
v1.10.0 0.577 0.774 0.923 0.667
v1.11.0 0.775 0.882 0.968 0.811
v1.12.0 0.577 0.759 0.953 0.631
v1.99.0 0.712 0.851 0.945 0.774
v2.0.0 0.589 0.778 0.933 0.667
v2.1.0 0.744 0.859 0.982 0.764
v2.2.0 0.667 0.829 0.929 0.748
v2.4.0 0.168 0.652 0.694 0.614

OpenSSL
v0.9.3 0.833 0.909 1 0.833
v0.9.4 0.833 0.909 1 0.833
v0.9.5 0.833 0.909 1 0.833
v0.9.6 0.667 0.8 1 0.667
v0.9.7 0.71 0.83 1 0.71
v0.9.8 0.712 0.831 1 0.712
v1.0.0 0.71 0.844 0.964 0.75
v1.0.1 0.725 0.866 0.913 0.824
v1.0.2 0.667 0.8 1 0.667

Overall
Average 0.738 0.869 0.914 0.838
Median 0.761 0.883 0.923 0.888

of MCC= 0.738 (0.761), F-measure= 0.869 (0.883), Preci-
sion= 0.914 (0.923), and Recall= 0.838 (0.888) in prediction
of vulnerable components in the next release of a project. In
almost all the cases, the prediction models trained with the
clean data achieved over 0.65 MCC (except 4 cases), over
0.75 F-measure (except 2 cases), over 0.8 Precision (except 1
case), and over 0.7 Recall (except 4 cases), which according
to state of the art can be considered as actionable [36].

TABLE III: (RQ2) Comparison between state-of-the-art and
our approach: Clean Training Data Setting - average(median)

Approach MCC F-measure Precision Recall
Software Metrics 0.497(0.53) 0.444(0.48) 0.852(0.92) 0.319(0.335)
Imports 0.475(0.49) 0.426(0.44) 0.827(0.88) 0.302(0.335)
Function Calls 0.524(0.555) 0.481(0.5) 0.841(0.89) 0.357(0.345)
Text Mining 0.491(0.5) 0.441(0.46) 0.842(0.92) 0.321(0.32)
Our 0.738(0.761) 0.869(0.883) 0.914(0.923) 0.838(0.888)

Answer to RQ1: The vulnerability prediction models
built on our approach successfully predicts the vulner-
able components with an average MCC score of 0.738.

B. Comparison with state-of-the-art techniques (RQ2)

We use FrameVPM [21] to apply the baseline techniques
on all the components of a system release. The resulting
prediction models are then evaluated in a similar manner as
RQ1. Figure 3 shows (in box plot format) the performance
comparison of our approach with the replicated approaches.
Each box plot shows the distribution of a specific performance
indicator (MCC / F-measure / Precision / Recall) for the related
techniques per project.

We observe that our approach clearly outperforms the other
techniques. Table III summarizes the overall performance of
the techniques. Interestingly, our approach achieved much
higher prediction performance in comparison to the existing
state of the art techniques, in every criterion. The differ-
ences are statistically significant.1 Table III shows that the
technique Function Calls outperforms the other state-of-the
art techniques (Software Metrics, Imports and Text Mining)
with the highest average MCC of 0.524. Our approach even
outperforms Function Calls, on an average by 41% in MCC
and 81% in F-measure. It is worth mentioning that the average
improvement offered by our approach in Precision is 9%,
whereas in Recall, is 135% in comparison to Function Calls.

Answer to RQ2: When trained with clean data, our
approach has significantly higher prediction ability
(MCC score improvement of 41%) than the current
state-of-the-art.

C. Novel and Existing Vulnerable Component Prediction
(RQ3)

Table IV shows the average percentages of the existing
vulnerable component correctly predicted by our approach and
the state-of-the-art techniques across the 56 aforementionned
releases of Linux Kernel, Wireshark and OpenSSL. The mod-
els that are based on our approach predict 92.79%, 69.48% and

1We compared the MCC values, by using Wilcoxon sign-rank-test [45], and
obtained a p − value < 6.2e−9 with Software Metrics, Function Calls and
Text Mining , and a p − value < 5.3e−9 with Imports. We also compared
the effect size of MCC values, by using the Vargha-Delaney A measure [42],
and obtained a value of 0.05 with Software Metrics, 0.03 with Imports, and
0.07 with Function Calls and Text Mining, clearly indicating that our approach
significantly outperforms related techniques.

TABLE IV: (RQ3) Comparison between previous techniques
and our approach: Existing vulnerable component prediction.

Approach
Linux Kernel

36 releases
Wireshark
10 releases

OpenSSL
10 releases

Software Metrics 48.12% 54.84% 54.17%
Imports 48.12% 60.76% 50.00%
Function Calls 58.65% 52.69% 64.58%
Text Mining 57.14% 56.99% 64.58%
Our 92.79% 69.48% 87.19%

TABLE V: (RQ3) Comparison between previous techniques
and our approach: Novel vulnerable component prediction.

Approach
Linux Kernel

36 releases
Wireshark
10 releases

OpenSSL
10 releases

Software Metrics 09.09% 15.48% 18.18%
Imports 50% 08.93% 23.08%
Function Calls 56.1% 60.00% 09.09%
Text Mining 45.45% 16.07% 18.18%
Our 76.53% 91.03% 60.07%

87.19% of the existing vulnerable components on an average
in Linux Kernel, Wireshark and OpenSSL project releases
respectively. The percentages gained by our approach are
higher than the state-of-the-art techniques by 34.14% for Linux
Kernel releases, 8.72% for Wireshark releases and 22.61% for
OpenSSL releases, indicating a higher learning potential in
comparison to the existing techniques.

On the other hand, Table V shows the average percentages
of the novel vulnerable component prediction. The trained
models that are based on our approach predict 76.53%, 91.03%
and 60.07% of the novel vulnerable components on an average
in Linux Kernel, Wireshark and OpenSSL project-releases,
respectively. The percentages gained by our approach are
higher than the existing techniques by 20.43% for Linux
Kernel releases, 31.03% for Wireshark releases and 36.99% for
OpenSSL releases, reflecting higher generalization capability
in comparison to the existing techniques.

It is worth noting that our approach obtains all the above
mentioned percentages with an overall average MCC of 0.738,
which is 41% higher than the MCC achieved by the state-of-
the-art techniques.

Answer to RQ3: Both, the learning potential and the
generalization capability of the models trained on our
approach are remarkably higher than the state-of-the-
art techniques.

D. Comparison with state-of-the-art techniques in a Realistic
Training Setting (RQ4)

In realistic training settings, a model is trained only on the
vulnerabilities of a release that were made public before the
next release date of the system. This unavoidably introduces
mislabelling noise [24].

Figure 4 shows that the performance of all the techniques
is considerably reduced in the realistic training setting, as
compared to the clean training data settings. This confirms
the results reported by Jimenez et al., [24]. Despite this

Linux Kernel Wireshark OpenSSL

0.0

0.2

0.4

0.6

0.8

1.0
M

CC

Software Metrics
Imports
Function Calls
Text Mining
Our

Linux Kernel Wireshark OpenSSL

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re
Linux Kernel Wireshark OpenSSL

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Linux Kernel Wireshark OpenSSL

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Fig. 3: Comparison with state-of-the-art techniques (RQ2): When trained with clean data, our approach outperforms state-
of-the-art techniques with an average improvement in MCC, F-measure, Precision, and Recall of 41%, 81%, 9%, and 135%
respectively.

TABLE VI: (RQ4) Comparison between state-of-the-art and
our approach: Realistic Training Setting - average(median)

Approach MCC F-measure Precision Recall
Software Metrics 0.056(0.03) 0.032(0.01) 0.306(0.3) 0.019(0.01)
Imports 0.062(0.06) 0.035(0.02) 0.339(0.33) 0.021(0.01)
Function Calls 0.068(0.05) 0.041(0.02) 0.338(0.33) 0.025(0.01)
Text Mining 0.061(0.03) 0.04(0.01) 0.288(0.25) 0.026(0.01)
Our 0.393(0.406) 0.687(0.677) 0.859(0.87) 0.582(0.557)

drop in performance, our approach outperforms the existing
techniques with a sizeable difference.

Again, the differences are statistically significant.2

Table VI shows the overall average and median performance
statistics for each technique. We can observe that the tech-
nique Function Calls outperforms the other state-of-the art
techniques (Software Metrics, Imports and Text Mining) with
the highest average MCC of 0.068. Our approach even out-
performs the technique Function Calls in all the performance
measures with an average improvement of 4.7 times in MCC
and 15.76 times in F-measure. It is interesting to note that the
average improvement in Precision offered by our approach
is 1.54 times over Function Calls; whereas in Recall, is 22
times, which is outstanding. This indicates that our approach
has much higher accuracy in vulnerability prediction than the
existing techniques in the realistic training setting as well.

Answer to RQ4: Under the realistic training setting,
a model based on our approach obtains significantly
higher accuracy in vulnerability prediction (MCC
score improvement by 4.7 times) than the current state-
of-the-art techniques.

VI. THREATS TO VALIDITY

Construct Validity: We use a publicly available tool (Vul-
Data7 [23]) for data collection using the git commit messages

2We compared the MCC values using Wilcoxon sign-rank-test, and obtained
a p − value < 6.3e−9 with Software Metrics, a p − value < 5.9e−9 with
Imports, a p − value < 7.7e−9 with Function Calls and a p − value <
5.6e−9 with Text Mining. We also compared the MCC values with the
Vargha-Delaney A measure, and obtained a value lower than 0.028 in every
case, indicating that our approach significantly outperforms related techniques.

and the CVE-NVD database. This process ensures the retrieval
of known and fixed vulnerabilities but, undiscovered or unfixed
vulnerabilities are ignored. This may result in false negatives
with a potential impact on our measurements. However, given
the size of Linux Kernel, Wireshark, and OpenSSL and the
long history of vulnerability reports, we believe that it is
unlikely to have many such cases.

Another concern originates from our choice to learn from
the vulnerable and fixed pairs of components. Since our
method has access to this information one could argue that
the improved performance is due to this and not due to our
method. To diminish this concern we also trained the previous
methods on both vulnerable and fixed components but this
resulted in negligible differences.

Internal Validity: This work only considers components
written in C, but these are not the only project elements
that can be linked to vulnerabilities. For instance, there are
parts of the Linux kernel which are written using assembly
code. However, since the great majority of the three systems
is written in C, it limits the impact of this threat.

Additionally, we use a publicly available tool (FrameVPM
[21]) to evaluate vulnerability prediction models. The tool
may unintentionally not reimplement exactly the original
approaches. To reduce this threat we inspected the code,
parameters, and experiment decisions for the exact replication
of the previous approaches. Since our results are in line with
the previously published ones, we believe that this threat is of
no particular importance.

Furthermore, following the suggestion of Shin et al. [34], the
tool uses the three best metrics, according to information gain,
to build the software metrics model. Still, there is a possibility
that additional metrics could provide different results.

External Validity: Although the study expands its evaluation
to three security-critical open source systems, the results may
not generalize to other projects (e.g., Android). Additional
studies are required to sufficiently take care of the general-
ization threat. Also, we split the methods in sequences of no
more than 50 tokens each. Method-splitting in larger sequences
may require more training time and computational resources
but can lead to better results.

Linux Kernel Wireshark OpenSSL

0.0

0.2

0.4

0.6

0.8

1.0
M

CC
Software Metrics
Imports
Function Calls
Text Mining
Our

Linux Kernel Wireshark OpenSSL

0.0

0.2

0.4

0.6

0.8

1.0

F1
Linux Kernel Wireshark OpenSSL

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Linux Kernel Wireshark OpenSSL

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Fig. 4: Comparison with state-of-the-art techniques in a Realistic Training Setting (RQ4): Despite a reduced performance in a
Realistic Training Setting, our approach significantly outperforms state-of-the-art techniques with an average improvement in
MCC, F-measure, Precision, and Recall of 4.7, 15.76, 1.54, and 22 times respectively.

VII. RELATED WORK

Early work in the area of vulnerability prediction has
focused on defining features that could be linked to vulner-
abilities and thus to be used to train learners. The first such
work can be traced back to the study of Neuhaus et al., [29],
that investigated the use of libraries and function calls. Later,
Shin et al., [34], [36] and Zulkernine et al., [10] investigated
the use of code metrics such as complexity, code churn, and
object oriented metrics.

These approaches although providing promising results
were all using features designed based on human intuition.
While powerful, such a way fails to take advantage of the big
data and code available today. In view of this, Scandariato et
al., [31] advocated that the learners should find their own
features without human intervention. To achieve this, they
suggested an approach based on text mining where code is
treated as text and the learner leans from Bags of words.
Their results showed that text mining could outperform all
previously introduced approaches [22].

Recently, deep learning techniques have been explored to
automatically learn the required features to predict vulnera-
bilities. Li et. al [26] used Bidirectional LSTMs to train a
vulnerability prediction model on code gadgets: semantically
related lines of code. This technique was shown to be effective
(under clean training settings) for analyzing two particular
weaknesses, namely, buffer error vulnerabilities (CWE-119)
and management error vulnerabilities (CWE-399). In contrast
our approach trains the translation model on sequences ex-
tracted from the source code (methods) and does not target
specific weaknesses.

Dam et. al [12] leveraged LSTM models to capture context
relationships between different tokens in the source code
to train a vulnerable component prediction classifier. Zhou
et al., and Suneja et al., [37], [48] used Graph Neural
Networks on program graph representations called Property
Graphs [46] to predict vulnerabilities. Although promising,
these approaches make the assumption that components with
unreported vulnerabilities are non-vulnerable similar to what
the other vulnerability prediction methods do. Therefore, their
performance should be limited by the noisy data as shown

by Jimenez et al., [24]. Moreover, developing such methods
require complex code analysis tasks which are impractical
in many real-world cases, limiting the applicability of the
methods. In contrast, our method is simple and easy to
apply since it requires minimal information (preprocessing the
variable and function names) to operate.

Machine learning has also been used in other software
engineering prediction tasks. For instance, several works [13],
[18], [43], [47] used machine learning models for defect
prediction. Particularly, RNN models have been used for
automatically fixing errors in C programs [17], for generating
API usage sequences [16], and for fault localization [20].
Closer to our work, machine translation-based approaches
have been successfully applied to automatically learn code
features for detecting code clones [44], for learning how to
mutate source code from bugs [40] and bug-fixing repairs [41].
Our approach constitutes, up to our knowledge, the first
approach that proposes and evaluates a machine translation-
based approach for vulnerability prediction.

VIII. CONCLUSION

This paper proposes a machine translation based approach
to automatically learn the features to predict vulnerable com-
ponents. Such predictions can be used to assist developers in
code reviews and security testing. The important advantage
of our approach is that it is completely automatic, it learns
latent features (context, patterns, etc.) linked with vulnera-
bilities based on information mining from code repositories
(in particular by analyzing historical vulnerability fixes and
their context). We empirically evaluated the effectiveness of
our approach following the methodological guidelines set by
Jimenez et al. [24]. In particular, we compared our approach
against the current state-of-the-art, on available releases of the
three security-critical open source systems that were also used
by [24], and showed that our approach outperforms existing
techniques under both, clean and noisy (realistic) training data
settings. On average, when trained in clean training data set-
ting, our proposed approach achieved an overall improvement
of 41% in MCC score. While the improvement in MCC score
by 4.7 times achieved by our approach in realistic training
setting, is even more remarkable.

REFERENCES

[1] Definition of vulnerability. https://cve.mitre.org/about/terminology.html,
(accessed August 01, 2020).

[2] The heartbleed bug. https://heartbleed.com/, (accessed August 01, 2020).
[3] Linux kernal. https://www.kernel.org, (accessed August 01, 2020).
[4] National vulnerability database. https://nvd.nist.gov, (accessed August

01, 2020).
[5] Openssl. https://www.openssl.org, (accessed August 01, 2020).
[6] Wireshark. https://www.wireshark.org, (accessed August 01, 2020).
[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural

machine translation by jointly learning to align and translate, 2014.
[8] D. Britz, A. Goldie, T. Luong, and Q. Le. Massive Exploration of Neural

Machine Translation Architectures. ArXiv e-prints, March 2017.
[9] Jason Brownlee. When to use mlp, cnn, and rnn

neural networks. https://machinelearningmastery.com/
when-to-use-mlp-cnn-and-rnn-neural-networks, 2018 (accessed
August 01, 2020).

[10] Istehad Chowdhury and Mohammad Zulkernine. Using complexity,
coupling, and cohesion metrics as early indicators of vulnerabilities.
J. Syst. Archit., 57(3):294–313, March 2011.

[11] M. L. Collard and J. I. Maletic. srcml 1.0: Explore, analyze, and
manipulate source code. In 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 649–649, 2016.

[12] H. K. Dam, T. Tran, T. T. M. Pham, S. W. Ng, J. Grundy, and
A. Ghose. Automatic feature learning for predicting vulnerable software
components. IEEE Transactions on Software Engineering, pages 1–1,
2018.

[13] Marco D’Ambros, Michele Lanza, and Romain Robbes. Evaluating de-
fect prediction approaches: A benchmark and an extensive comparison.
Empirical Softw. Engg., 17(4–5):531–577, August 2012.

[14] Martı́n Abadi et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[15] McAfee Center for Strategic and International Studies (CSIS). Economic
impact of cybercrime - no slowing down. https://www.mcafee.com/
enterprise/en-us/solutions/lp/economics-cybercrime.html.

[16] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim.
Deep api learning. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, page 631–642, New York, NY, USA, 2016. Association for
Computing Machinery.

[17] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix:
Fixing common c language errors by deep learning. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17,
page 1345–1351. AAAI Press, 2017.

[18] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A
systematic literature review on fault prediction performance in software
engineering. IEEE Transactions on Software Engineering, 38(6):1276–
1304, 2012.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, November 1997.

[20] Xuan Huo, Ming Li, and Zhi-Hua Zhou. Learning unified features from
natural and programming languages for locating buggy source code.
In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI’16, page 1606–1612. AAAI Press, 2016.

[21] Matthieu Jimenez. FrameVPM: a framework to build and evalu-
ate vulnerability prediction models. https://github.com/electricalwind/
framevpm.

[22] Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. An empirical
analysis of vulnerabilities in openssl and the linux kernel. In 2016 23rd
Asia-Pacific Software Engineering Conference (APSEC), pages 105–112.
IEEE, 2016.

[23] Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. Enabling
the continous analysis of security vulnerabilities with vuldata7. In
Proceedings of the 18th IEEE International Working Conference on
Source Code Analysis and Manipulation SCAM 2018, Madrid, Spain,
September 23-24, 2018, 2018.

[24] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro,
Yves Le Traon, and Mark Harman. The importance of accounting
for real-world labelling when predicting software vulnerabilities. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, page 695–705, New York, NY, USA,
2019. Association for Computing Machinery.

[25] Igor Kononenko. On biases in estimating multi-valued attributes. In
Proceedings of the 14th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’95, page 1034–1040, San Francisco, CA,
USA, 1995. Morgan Kaufmann Publishers Inc.

[26] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang,
Zhijun Deng, and Yuyi Zhong. Vuldeepecker: A deep learning-based
system for vulnerability detection. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018, 2018.

[27] B.W. Matthews. Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)
- Protein Structure, 405(2):442 – 451, 1975.

[28] Patrick Morrison, Kim Herzig, Brendan Murphy, and Laurie Williams.
Challenges with applying vulnerability prediction models. In Proceed-
ings of the 2015 Symposium and Bootcamp on the Science of Security,
HotSoS ’15, New York, NY, USA, 2015. Association for Computing
Machinery.

[29] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas
Zeller. Predicting vulnerable software components. In Proceedings of
the 14th ACM Conference on Computer and Communications Security,
CCS ’07, page 529–540, New York, NY, USA, 2007. Association for
Computing Machinery.

[30] B. Potter and G. McGraw. Software security testing. IEEE Security
Privacy, 2(5):81–85, 2004.

[31] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen. Predicting
vulnerable software components via text mining. IEEE Transactions on
Software Engineering, 40(10):993–1006, 2014.

[32] M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The use of
machine learning in software defect prediction. IEEE Transactions on
Software Engineering, 40(6):603–616, 2014.

[33] Apeksha Shewalkar, Deepika Nyavanandi, and Simone Ludwig. Perfor-
mance evaluation of deep neural networks applied to speech recognition:
Rnn, lstm and gru. Journal of Artificial Intelligence and Soft Computing
Research, 9:235–245, 10 2019.

[34] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Os-
borne. Evaluating complexity, code churn, and developer activity metrics
as indicators of software vulnerabilities. IEEE Trans. Softw. Eng.,
37(6):772–787, November 2011.

[35] Yonghee Shin and Laurie Williams. An empirical model to predict
security vulnerabilities using code complexity metrics. In Proceedings of
the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’08, page 315–317, New York,
NY, USA, 2008. Association for Computing Machinery.

[36] Yonghee Shin and Laurie Williams. Can traditional fault prediction
models be used for vulnerability prediction? Empirical Software Engi-
neering, 18(1):25–59, February 2013.

[37] Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim Laredo, and Alessandro
Morari. Learning to map source code to software vulnerability using
code-as-a-graph, 2020.

[38] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence
learning with neural networks, 2014.

[39] Yaming Tang, Fei Zhao, Yibiao Yang, Hongmin Lu, Yuming Zhou,
and Baowen Xu. Predicting vulnerable components via text mining
or software metrics? an effort-aware perspective. In QRS, pages 27–36.
IEEE, 2015.

[40] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. Learning how to mutate source
code from bug-fixes. 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sep 2019.

[41] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. An empirical study on learning
bug-fixing patches in the wild via neural machine translation. ACM
Trans. Softw. Eng. Methodol., 28(4):19:1–19:29, 2019.

[42] András Vargha and Harold D. Delaney. A critique and improvement of
the ”cl” common language effect size statistics of mcgraw and wong.
Journal of Educational and Behavioral Statistics, 25(2):101–132, 2000.

[43] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, page 297–308, New
York, NY, USA, 2016. Association for Computing Machinery.

[44] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. Deep learning
code fragments for code clone detection. In 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 87–98, 2016.

https://cve.mitre.org/about/terminology.html
https://heartbleed.com/
https://www.kernel.org
https://nvd.nist.gov
https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks
https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks
https://www.mcafee.com/enterprise/en-us/solutions/lp/economics-cybercrime.html
https://www.mcafee.com/enterprise/en-us/solutions/lp/economics-cybercrime.html
https://github.com/electricalwind/framevpm
https://github.com/electricalwind/framevpm

[45] Frank Wilcoxon. Individual comparisons by ranking methods. Biomet-
rics Bulletin, 1(6):80–83, 1945.

[46] Fabian Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and
discovering vulnerabilities with code property graphs. 2014 IEEE
Symposium on Security and Privacy, pages 590–604, 2014.

[47] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. Deep learning for just-
in-time defect prediction. In 2015 IEEE International Conference on
Software Quality, Reliability and Security, pages 17–26, 2015.

[48] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu.

Devign: Effective vulnerability identification by learning comprehensive
program semantics via graph neural networks, 2019.

[49] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel
Giger, and Brendan Murphy. Cross-project defect prediction: A large
scale experiment on data vs. domain vs. process. In Proceedings of the
7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, page 91–100, New York, NY, USA, 2009.
Association for Computing Machinery.

	I Introduction
	II Background
	II-A Vulnerabilities
	II-B Vulnerability Prediction Modeling
	II-C Granularity Level
	II-D Machine Translation
	II-E RNN Encoder-Decoder architecture

	III Approach
	III-A Decompose Components into Code Fragment (Functions)
	III-B Categorize Functions as Vulnerable or Non-Vulnerable
	III-C Abstract the Irrelevant Information
	III-D Build the Machine Translator
	III-E Predict Vulnerabilities

	IV Experimental Evaluation
	IV-A Research Questions
	IV-B Data
	IV-C Implementation and Model Configuration
	IV-D Experimental Settings
	IV-E Benchmarks for Vulnerability Prediction
	IV-F Performance measurement

	V Experimental Results
	V-A Prediction with Clean Training data (RQ1)
	V-B Comparison with state-of-the-art techniques (RQ2)
	V-C Novel and Existing Vulnerable Component Prediction (RQ3)
	V-D Comparison with state-of-the-art techniques in a Realistic Training Setting (RQ4)

	VI Threats To Validity
	VII Related Work
	VIII Conclusion
	References

