
Payload Analysis of Adversaries’ Tooling:
Automated Identification of Fuzzers

Aayush Garg1, Constantinos Patsakis2 (Senior Member, IEEE), Zanis Ali Khan3, and Qiang Tang4

Abstract—API fuzzing, a technique widely used to uncover
vulnerabilities in web applications, poses significant security
risks when exploited maliciously, leading to service disruptions
and data breaches. While firewalls can block unauthorized
fuzzing attempts, they limit defenders’ ability to gather data
on attacker methodologies, reducing actionable cyber threat
intelligence. Identifying the responsible fuzzers enables defenders
to trace the attacker, uncover their motives, and assess the
potential impact, which helps security teams prepare more
effectively, mitigate attacks, and develop targeted countermea-
sures to enhance the security of web APIs. However, analyzing
the payloads generated by fuzzers remains largely unexplored
and presents significant challenges. For instance, fuzzers often
generate similar payloads due to shared initial seeds and similar
fuzzing strategies, making accurate fuzzer identification more
complex. To analyze this, we experimented with four well-known
API fuzzers; APIFuzzer, Kiterunner, RESTler, and Schemathesis,
and created a comprehensive dataset of their payloads targeting
five different web APIs. Our thorough analysis reveals that the
overlapping payloads, i.e., the identical generated payloads across
these fuzzers, can be substantially large. For instance, ≈17% of
payloads generated with Schemathesis overlapped with ≈12% of
the payloads generated with RESTler across different web APIs.
As a result, defining distinctive payload features that machine
learning models can learn to differentiate and identify their
fuzzer accurately becomes more difficult. Alternatively, deep
learning techniques, known for their ability to automatically
extract features, present a compelling alternative. To evaluate
this, we experimented with an architecture combining a bidi-
rectional Transformers-based encoder-decoder and a machine
learning classifier to classify fuzzers based on their payloads.
Rigorous evaluation using k-fold cross-validation demonstrated
high precision and recall, averaging 89%, showcasing this
combinatorial architecture’s robustness and effectiveness. Our
findings demonstrate the potential of combining deep learning
and machine learning for fuzzer identification and enhancing
web API security.

I. INTRODUCTION

The rapid digital transformation of modern organizations
has significantly expanded their attack surfaces, exposing them
to a wide range of cyber threats. Many organizations, partic-
ularly those for whom cybersecurity is not a core function,
invest heavily in awareness, preparedness, and intelligence to
mitigate these risks. Cyber threat intelligence plays a vital role
by providing insights into potential threats, especially during
the early stages of an attack. Of particular interest in this work

1A. Garg , Z. A. Khan, and Q. Tang are with the Luxembourg Institute
of Science and Technology (LIST) Email: aayush.garg@list.lu,
zanis-ali.khan@list.lu, qiang.tang@list.lu

2C. Patsakis is with the Department of Informatics, University of Piraeus,
Greece, and the Information Management Systems Institute of Athena Re-
search Center, Greece. Email: kpatsak@unipi.gr

is the identification of early signs of possible attacks, which
can enable timely and effective defensive actions.

According to Lockheed Martin’s Cyber Kill Chain [1] and
MITRE’s ATT&CK framework [2], the first step of an attack
is reconnaissance, where adversaries observe their targets to
identify entry points. This can involve passive techniques,
such as gathering email addresses or DNS entries, or active
techniques, such as scanning services (T1595 in MITRE)
and identifying vulnerabilities (T1595.002). During this phase,
defense mechanisms like firewalls aim to block malicious
traffic. However, such measures often miss the opportunity
to gather valuable intelligence about the attacker’s tools and
methodologies, leaving the organization less prepared for
future attacks.

Bianco’s pyramid of pain [3] suggests that higher-value
intelligence, such as tooling identification, provides more
actionable insights than simpler indicators like IP addresses
or domain names. Identifying the tools used in an attack
can reveal the attacker’s capabilities, intentions, and modus
operandi. More importantly, the targeted victim can also
prepare itself in case of a successful attack, as for some
threat actors, the modus operandi is well documented (e.g., see
MITRE’s APT groups1). For instance, while many adversaries
use common tools like Metasploit or CobaltStrike [4], others,
such as APT29, switch to less common options like Sliver and
Brute Ratel [5], [6]. Tooling identification enables defenders to
anticipate future attack patterns and tailor defensive strategies
accordingly, even when traditional indicators of compromise
are obscured.

In this vein, current approaches in the literature aim to
fingerprint clients using available network information. For
instance, JA4 and its variants create fingerprints from the
network responses between the host and server, specifically
leveraging the unencrypted ClientHello message in the TLS
handshake. While this approach can be effective in identifying
specific tools and malware, such as CobaltStrike and Qakbot, it
is easily bypassed by modifying encryption algorithms or user
agent strings. To overcome such limitations, we focus on traffic
analysis of API fuzzers to distinguish them based on their
payloads. As previously discussed, adversaries often rely on
specific tooling during their attacks. By identifying these tools
promptly, defenders can infer the attacker’s motives, predict
other tools that may be used, anticipate targeted endpoints,
and assess the potential impact. This intelligence enhances
preparedness, strengthens cybersecurity posture, and supports

1https://attack.mitre.org/groups/

timely threat mitigation. Notably, our approach enables de-
fenders to identify the attacker’s tooling without needing
access to the tool itself. For instance, detecting CobaltStrike
typically requires observing a beacon launched within the or-
ganization’s network, implying a perimeter breach. In contrast,
our method operates during the reconnaissance phase, prior
to an actual attack, without requiring access to the attacker’s
resources.

To assess the validity of this approach, we experimented
with four well-known API fuzzers that an attacker can use to
find vulnerabilities in a publicly exposed API. Specifically, we
focus on APIFuzzer, Kiterunner, RESTler, and Schemathesis.
We created a comprehensive dataset of payloads generated
by these fuzzers while targeting five different RESTful APIs
adhering to OpenAPI specifications. The task is not trivial;
for instance, our analysis revealed that the number of over-
lapping payloads, i.e., the same generated payloads across
these fuzzers, can be substantially large. For instance, ≈17%
of payloads generated with Schemathesis overlapped with
≈12% of the payloads generated with RESTler across different
web APIs. Thus, defining distinctive features of payloads that
machine learning models can learn to accurately differentiate
and identify their fuzzer origins is even more challenging.
Alternatively, deep learning methods, renowned for their effec-
tiveness in automatically extracting features from text [7], [8],
offer a promising alternative. To evaluate this, we developed
an architecture combining bidirectional Transformers-based
encoder-decoder models with a machine learning classifier to
distinguish between fuzzers based on their payloads. Rigorous
evaluation using k-fold cross-validation yielded high preci-
sion and recall, averaging 89%, demonstrating the robustness
and effectiveness of this combinatorial architecture for API
fuzzer identification. These findings highlight the potential of
combining deep learning and machine learning in advancing
traffic analysis strategies for tooling identification and offer
a promising direction for future research and development in
cyber threat intelligence.

II. BACKGROUND & RELATED WORK

A. Fuzzing

Fuzzing is currently an important vulnerability discovery
technique. The primary objective of fuzzing is to create a
variety of inputs to identify as many exceptions as possible.
Prior to conducting fuzz testing, the input format is defined,
and the target program is selected. The workflow consists
of four key stages: i) generating test cases, ii) executing the
target program, iii) monitoring for exceptions, and iv) man-
aging those exceptions. Compared to other testing techniques,
fuzzing is relatively straightforward to implement and boasts
excellent extensibility and applicability. Additionally, since
fuzzing is carried out in a real execution environment, it tends
to achieve a high level of accuracy. Another benefit is its
minimal reliance on prior knowledge of target applications,
coupled with its ability to scale effortlessly for large-scale
systems.

While fuzzing faces some challenges, such as lower effi-
ciency and reduced code coverage, its advantages often over-
shadow these drawbacks. Consequently, fuzzing has become
one of the most powerful and efficient techniques for uncover-
ing vulnerabilities in modern systems. The test effectiveness is
directly affected by the quality of the generated test cases. The
inputs should align as closely as possible with the requirements
of the programs being tested regarding input format. On the
other hand, these inputs must be sufficiently malformed to
increase the likelihood of causing the program to fail during
processing.

Fuzzing can be categorized into two main types based on
how inputs are generated: mutation-based, and generation-
based. Generation-based fuzzing creates inputs from the
ground up, relying on defined grammars [9]–[11] or a valid
corpus [12]–[14]. In this approach, inputs are derived directly
from a predetermined seed set. In contrast, mutation-based
fuzzing takes existing inputs, known as seeds, and modifies
them to produce new test cases [15]–[17]. This method in-
volves executing various strategies, such as seed scheduling,
byte scheduling, and mutation scheduling, to generate inputs
from the seed set.

Recently, REST API fuzzing has become an effective
method for detecting security flaws and vulnerabilities in
cloud-based services. Traditional fuzzers [18], [19] often
struggle with handling complex API dependencies. API
fuzzing [20], [21] addresses these challenges by analyzing
dependencies between different API requests and adapting
to the responses dynamically. This approach enables more
effective exploration of the API space, leading to the discovery
of critical bugs that are harder to detect with simpler fuzzing
methods. This technique is particularly valuable in testing
modern, large-scale web services. The following section out-
lines the specific API fuzzing techniques used in this study.

B. API Fuzzing Techniques

API fuzzing techniques play a vital role in assessing the
robustness of applications by testing their responses to mal-
formed or unexpected inputs. In this study, we utilize four
widely adopted API fuzzers, each chosen for its effective
approach to payload generation and vulnerability detection:

a) APIFuzzer [22]: APIFuzzer is a powerful and ver-
satile tool designed for fuzz testing web APIs. This open-
source framework enables developers and security researchers
to identify vulnerabilities in RESTful APIs by generating and
sending a wide variety of inputs, including valid and mal-
formed data. By employing a systematic approach to testing,
APIFuzzer helps uncover security flaws that malicious actors
could potentially exploit. The tool supports customizable con-
figuration options, allowing users to specify endpoints, request
methods, and input formats, making it adaptable to diverse
testing environments. Furthermore, APIFuzzer’s integration
with existing test suites facilitates seamless incorporation
into development workflows, promoting continuous security
assessment throughout the software development lifecycle.
With its user-friendly interface and comprehensive documen-

Fig. 1. Overview of the attack scenario: An active adversary sends authenticated requests to a RESTful API and modifies them, including sending malformed
ones, to probe for vulnerabilities that could result in unexpected outputs. Potential attack scenarios include DoS, code injection, command execution, and
leakage of sensitive information via the API response.

tation, APIFuzzer empowers users to enhance the security and
robustness of their API implementations effectively. The tool
is publicly available2.

b) Kiterunner [23]: Kiterunner is a state-of-the-art
fuzzer designed to enhance content discovery specifically for
modern web applications, particularly APIs. Unlike traditional
fuzzers that primarily focus on locating static files and folders,
Kiterunner employs a sophisticated approach by leveraging a
curated dataset of Swagger specifications to efficiently brute-
force routes and endpoints. Modern application frameworks,
such as Flask, Rails, Express, and Django, define routes requir-
ing specific HTTP methods, headers, parameters, and values,
often overlooked by conventional fuzzing tools. Conversely,
Kiterunner utilizes a dataset compiled from multiple sources,
including an internet-wide scan of the most common Swag-
ger paths and contributions from GitHub via BigQuery, and
APIs.guru [24] database. By condensing this information into
its schema, Kiterunner constructs and sends requests that align
with the expected configurations of each API endpoint, ensur-
ing the use of the correct HTTP methods and relevant headers
and parameters. This targeted approach enables Kiterunner to
efficiently perform both traditional content discovery and API
endpoint fuzzing, enhancing the accuracy and effectiveness of
API testing and exploration. The tool is publicly available3.

c) RESTler [20]: Restler is a fuzzing tool specifically
designed for automated test generation for REST APIs, such
as cloud services. It analyzes Swagger specification, which de-
fines the structure of the API, including the types of requests it
supports and their corresponding responses. Restler generates
test cases by inferring dependencies between API requests.
For instance, it tracks whether one request’s output might
be required as the input for the subsequent request (i.e., a
resource ID returned from one request might be needed by the
subsequent request). Additionally, Restler dynamically learns

2APIFuzzer. https://pypi.org/project/APIFuzzer/0.9.13
3Kiterunner. https://github.com/assetnote/kiterunner/releases/tag/v1.0.2

from the previous test executions, analyzing API responses to
avoid invalid request sequences in future tests. This approach
(dual) of dependency inference and dynamic feedback
allows Restler to exploit a large space of possible request
combinations, thus minimizing the invalid tests. In real-world
systems like Gitlab, it has been successful in identifying
unseen bugs, demonstrating its effectiveness as a tool for
enhancing the robustness and security of cloud-based services.
The tool is publicly available4.

d) Schemathesis [21]: Schemathesis is designed for
property-based testing of web APIs, described by OpenAPI
and GraphSQL [25] schemas. It automatically generates
fuzzing tests to identify both crashes and subtle semantic
errors, such as violations of the API schema or data expo-
sure. It utilizes the Hypothesis [26] testing library, which
focuses on generating valid data based on API schemas
and then systematically exploring variations, including edge
cases. It transforms API schemas into structured tests that
explore different combinations of inputs and also can be
customized by the user to focus on specific aspects of the
API. Moreover, Schemathesis uses schema canonicalization to
efficiently generate valid and subtly valid inputs, optimizing
error detection and reducing unnecessary test failures. It also
incorporates techniques like shrinking, which simplifies failing
test cases, and error deduplication, allowing for efficient bug
identification. The tool is publicly available5.

C. Cyber Threat Intelligence

Cyber Threat Intelligence (CTI) plays a pivotal role in cy-
bersecurity, focusing on understanding adversarial tactics and
tools to anticipate potential threats. Established frameworks
such as Lockheed Martin’s Cyber Kill Chain [1] and MITRE
ATT&CK [2] categorize the tactics, techniques, and proce-
dures (TTPs) used by adversaries, providing defenders with
structured knowledge of each stage in an attack lifecycle [27].

4RESTler. https://github.com/microsoft/restler-fuzzer
5Schemathesis. https://github.com/schemathesis/schemathesis

By cataloging TTPs and the tools used in different attack
phases, CTI helps organizations detect and mitigate threats,
highlighting the value of understanding adversarial tools and
methodologies [28].

Research has shown that tool-specific attribution can en-
hance threat intelligence by linking observed attack patterns
to particular threat groups [29]. Studies indicate that attackers
often prefer specific tools based on their intended goals, such
as data exfiltration, ransomware deployment, or denial-of-
service attacks, and may manipulate artifacts not only to hide
their traces but also to confuse and deceive [30]. In this sense,
timely and accurately determining the tooling of the adversary
becomes even more tempting for the defender. In this direction,
the current state of the art and practice focus more on artifacts
that come in the form of file system changes, domains, IPs,
memory dumps, etc. Therefore, the defender blocks domains
and IPs that have bad reputation, as collected from various
threat intelligence feeds, or collects artifacts from the hosts to
assess whether it has or is suffering an attack. On the other
hand, network traffic analysis can also detect malicious traffic
[31]–[33]. The closest work to ours is perhaps [34] in which
the researchers use CNN and RNN to classify payloads and
identify potential attacks. Likewise, Liu et al. [35] use a graph
convolutional network to detect cross-site scripting attacks.
The above suggests that tooling identification from payloads is
a field that has not been adequately explored as the literature
is mainly focused on attack detection.

III. PROBLEM SETTING

In what follows, we consider an active adversary, referred
to as Malory, who targets an internet-exposed RESTful API
owned by her victim, denoted as Valery. Malory can send
valid, authenticated requests to Valery’s API and collect its
responses and service status. Using these legitimate requests
as a baseline, Malory attempts to manipulate the requests, in-
troducing alterations, including malformed inputs, to uncover
unexpected behaviors. Such behaviors can be exploited to
launch a range of attacks, including, but not limited to, denial
of service, code injection, command execution, and leakage of
sensitive information through API responses, as illustrated in
Figure 1

While the above scenario may appear demanding, it is based
on realistic assumptions. The primary reason is that internet-
exposed RESTful APIs of targeted victims are relatively easy
for adversaries to discover through various methods. For
instance, an adversary can reverse engineer publicly available
applications, a technique particularly common with mobile
apps, to uncover API endpoints and their associated parame-
ters. Additionally, many organizations unintentionally expose
API details through public-facing websites, where documen-
tation or endpoint information can sometimes be located.
Moreover, specialized cyber threat intelligence services and
tools are available that help adversaries identify and analyze
APIs linked to specific targets. Similarly, the assumption that
the requests are authenticated is also practical. Attackers often
register for legitimate access to the services provided by their

target, especially in the context of mobile services, where
registration processes are typically straightforward. Once reg-
istered, attackers can analyze the authenticated calls made
by their devices during regular use of the service. These
calls can serve as a reference for understanding API behavior
and potential vulnerabilities. Additionally, API documentation,
often provided through OpenAPI, further simplifies the process
by offering detailed specifications of endpoints, methods, and
expected inputs. Lastly, it is reasonable to assume that Malory,
as a skilled adversary, will not perform these tasks manually.
Instead, she is likely to rely on specialized tools, such as
fuzzers, to automate the generation and submission of requests.

Problem Formalization. Given this setup, the problem can
be formalized as follows: Let there be a set of adversaries
M1,M2, ...,Mk, each using a unique fuzzer F1, F2, ..., Fk to
attack Valery’s RESTful API. Each adversary submits requests
through their corresponding fuzzer, and we assume that each
fuzzer operates from a unique IP address. This allows the
requests to be grouped by their originating IP address. As
a result, each group of requests, denoted as R1, R2, ..., Rk,
contains only the requests generated by a single fuzzer. Each
group Ri consists of individual requests r1, r2, ..., rni

, i.e.,
Ri = {r1, r2, ..., rni

}.
Valery’s API includes logging functionality, enabling her

to record all unencrypted requests received by the API. This
logging creates a dataset of grouped requests, R1, R2, ..., Rk.
The problem is to determine, for any given request r ∈ Ri,
the index i corresponding to the originating fuzzer. In essence,
the goal is to classify the origin of each request based on its
content, identifying which fuzzer generated it.

The above allows us to formulate our research questions
as follows. First, to understand the extent to which different
fuzzers generate similar payloads, which could impact our
model’s ability to distinguish between fuzzers, we ask:
RQ1 Payload Overlap Analysis: How much overlap exists

between the payloads generated by different API
fuzzers?

Second, to evaluate our model’s performance in correctly
identifying the origin fuzzer of each payload, despite any
overlap between fuzzers, we ask:
RQ2 Fuzzer Classification Performance: How well can

a combined deep learning and machine learning
architecture distinguish between payloads to identify
their fuzzer origins despite overlapping payloads?

IV. APPROACH

We aim to identify the origin, i.e., the fuzzer, responsible
for generating the API-attacking payload. To this end, there
are two approaches, one focused on the client and one on the
payloads. In the former, the goal is to fingerprint the client
used to perform the requests. As discussed, this can be easily
accomplished using solutions like JA3 and JA4, which indeed
create unique fingerprints for the four fuzzers. Despite offering
an easy-to-compute method, these fingerprints are very fragile.
By making minor changes to the user agent string or using

K-fold cross-evaluation & data leakage handling

TrainingPrediction

Anonymisation, Generalisation & Sequence Creation

Sequences

Training
Set

Test Set

Fold-1

Fold-2

Fold-3

Fold-4

Fold-5

Encoder
Decoder
Training

Labels
(1/2/3/4)

Classifier
Training

Embeddings

Training
Set

Trained
Encoder
Decoder

Trained
ClassifierEmbeddings

Test Set

Predicted
Labels

Payload
Flattening

Space-separated tokens
https://virtserver.swaggerhub.com/myname/api_iot/1
.0.0/heater?temperature=179d707d907d49

https : / / domain_name / user_name / api_name /
api_ver / heater ? temperature = 179d707d907d49

Fig. 2. Overview of our approach: Payloads are anonymized, generalized, and tokenized. The dataset is split into five folds for k-fold cross-validation (k = 5),
preventing data leakage by removing sequences from the training set that appear in the test set. During each iteration, a Transformers-based encoder-decoder
model is trained using four folds to produce embeddings, which are then used to train a classifier. The classifier is evaluated on the remaining fold, repeating
the process for all folds.

another version of the libraries (which can change the encryp-
tion algorithms), the extracted fingerprint can be completely
different, rendering this approach useless. The above changes
can be made deliberately, i.e., the attacker changed them to
avoid detection, or inadvertently, i.e., the attacker made a
system update. Nevertheless, given that defenders collect such
fingerprints and block them see, for instance, the blocklist of
Abuse6, advanced attackers are expected to bypass them.

As a result, we consider that a more robust approach is the
detection through behavioral patterns and foster a payload-
based approach. This approach is higher in the pyramid of
pain compared to the fingerprint approach and, therefore, more
difficult for the attacker to bypass. Indeed, as we demonstrate,
our AI-based solution can accurately identify the attacker’s
tooling with little resources.

To minimize engineering and computational overhead, our
approach aims to automatically learn relevant features of
payloads without relying on manual feature engineering. This
is achieved by dividing the problem into two stages: first,
generating payload representations using a code embedding
technique, and second, identifying the origin, i.e., the fuzzer,
based on these embeddings.

A. Overview

Figure 2 illustrates the overall workflow of our approach,
which is divided into 4 key steps:

1) Building a token representation: This step involves pre-
processing the original payload to remove redundant

6https://sslbl.abuse.ch/ja3-fingerprints/

information and standardize the request URL. The result
is a homogenized URL code, which is then tokenized
into a sequence of tokens. Each payload is transformed
into its tokenized representation to be used in subsequent
steps.

2) K-fold cross-validation & Data leakage handling: The
dataset is partitioned into 5 folds for k-fold cross-
validation. During each iteration, 4 folds are utilized
for training, while the remaining fold is reserved for
testing. To prevent data leakage, we remove all token
sequences from the training set that appear in the test
set, thereby providing a robust evaluation of the model’s
generalization.

3) Payload Representation Learning: A Transformers-
based encoder-decoder model is trained to produce em-
beddings, or vector representations, of the payloads. This
architecture was chosen for its ability to capture sequen-
tial dependencies within payloads, making it well-suited
for tasks involving structured data like API requests.
This enables our approach to automatically capture the
relevant features of the payloads without the need for
explicit feature definition.

4) Classification: A classification model is trained to asso-
ciate the embeddings with their corresponding fuzzers,
effectively identifying the origin of each payload.

Our approach aims to learn the properties of the payloads
that are useful for associating them with their fuzzer origins.
This aligns with recent studies on contextual selection [7],
[8] focused on classification. This characteristic makes our

approach applicable to payloads unseen during training.
The generation and collection of fuzzing payloads are

crucial in building a robust dataset for our fuzzer identifi-
cation task. To accurately capture a diverse range of attack
vectors and API responses, the APIs must represent real-
world scenarios and varied complexities. For this purpose,
we developed five distinct APIs, each tailored to different use
cases and security configurations, which were attacked using
four fuzzers, namely APIFuzzer, Kiterunner, RESTler, and
Schemathesis. These APIs span from simple CRUD operations
to more complex OAuth2 flows and IoT integrations, providing
a comprehensive testbed for generating fuzzing payloads that
reflect different security contexts and operations. The descrip-
tion of the developed APIs is reported in Table I.

Each API follows the OpenAPI 3.0 specification, provid-
ing a detailed structure for the fuzzing process by defin-
ing the API’s endpoints, parameters, data types, and ex-
pected responses. This standardized format enables the fuzzers
to systematically generate relevant payloads and test input
variations. The payloads generated from these fuzzers were
collected, processed, and utilized to train our classification
architecture to identify the fuzzer responsible for each payload.
This diverse API setup ensures the fuzzers are tested across
different contexts, enhancing the robustness of the dataset and
providing realistic attack scenarios for fuzzer identification.

B. Training Sequences Generation

A significant challenge in working with payloads is the
presence of private or sensitive information, such as user
credentials, API keys, or personally identifiable data, but
also deployment specific information, such as domain and
API names. To overcome these constraints, we preprocess
the payloads by anonymizing and generalizing identifiable
entities, including domain names, usernames, API names, API
versions, and other private data, replacing them with generic
placeholders. This anonymization step ensures that our model
focuses on learning the structural and behavioral patterns of
the payloads, rather than memorizing sensitive content.

To anonymize and generalize the payloads, we developed
a custom script that identifies specific sensitive fields within
the payloads and replaces them with reusable placeholders,
as shown in Figure 2. Each placeholder follows the format
type, where type indicates the nature of an entity e.g.,
domain_name, user_name, api_name, and api_ver.
These placeholders are reused consistently across the payloads
wherever the sensitive entity appears, allowing consistency
while ensuring privacy. This preprocessing step also enables
the model to generalize well to unseen data while protecting
sensitive information.

Next, we preprocess each payload by transforming it into
a single space-separated sequence of tokens. This tokenized
representation captures the complete structure of the pay-
load while maintaining computational efficiency during train-
ing [36], [37]. We set the maximum sequence length to 120
tokens, corresponding to the longest payload in our dataset.

Training models with this sequence length required less than
3 hours on an NVIDIA A100 GPU.

C. Learning Payload Representations with Transformers-
based Encoder-Decoder

The next step in our approach involves generating vector
representations, or embeddings, from the tokenized payloads,
that are subsequently used to train the classification model.
To achieve this, we implement a Transformers-based encoder-
decoder architecture, a neural network model widely utilized
for representation learning tasks [38], [39]. In this setup, the
encoder converts the tokenized payload into an embedding,
while the decoder reconstructs the original token representa-
tion from the embedding. The training objective is to minimize
the binary cross-entropy loss between the input token sequence
and the reconstructed output. Once trained, the encoder can
generate embeddings for unseen payloads by processing their
tokenized representations.

For our Transformers-based encoder-decoder implementa-
tion, we employ a bi-directional Recurrent Neural Network
(RNN) [40]–[43]. Our approach leverages the tf-seq2seq
framework [44], a robust and flexible framework for building
models. We use Gated Recurrent Units (GRU) [45] as RNN
cells, as GRUs have demonstrated superior performance over
simpler architectures like vanilla RNNs [46], [47]. To enhance
the model’s capacity, we integrate an attention mechanism
using AttentionLayerBahdanau [48], configured with a two-
layer AttentionDecoder and a single-layer BidirectionalRN-
NEncoder, each comprising 128 units.

To determine the optimal number of training epochs, we
conducted a preliminary experiment using a small validation
set, separate from the training and test data. This allowed us
to monitor the model’s convergence and adjust the training
duration accordingly. We observed that the model converges
effectively after just one training epoch, with sequences of up
to 120 tokens in length. Further training beyond the first epoch
did not improve the embeddings or overall performance. This
suggests that the model quickly captures the essential features
of the payloads, and additional training does not enhance
the quality of the learned representations. Consequently, we
restrict the training process to one epoch, which not only
ensures efficient convergence but also minimizes the risk of
overfitting [49] by preventing excessive iterations that could
lead the model to memorize the training data instead of
generalizing to unseen payloads.

D. Classifying Payloads to Identify their Fuzzer-Origins

Subsequently, we train a classifier to identify the fuzzer
responsible for generating a given payload. The classifier aims
to categorize each payload (represented by the embedding
generated by the encoder) into one of the four classes, cor-
responding to the four fuzzers that we study. The primary
objective is to maximize classification performance, evaluated
using standard metrics, as detailed in Section V-A.

For the classification task, we employ random forests [50],
chosen for their computational efficiency and demonstrated

TABLE I
OVERVIEW OF THE APIS USED IN OUR EXPERIMENTS

API Name Description Key Operations Security

Simple Item API A basic CRUD API demonstrating basic
operations on items.

GET /items, POST /items,
GET /items/{itemId}, PUT
/items/{itemId}

None

OAuth2 Password Flow API An example API using OAuth2 password
flow to describe security and multiple op-
erations.

GET /users, POST /users,
GET /users/{userId},
DELETE /users/{userId}

OAuth2 (password)

OAuth2 Application Flow API Another OAuth2-based API demonstrating
security configurations for application flow.

GET /example, POST
/users

OAuth2 (client credentials)

Swagger Petstore API A Swagger Petstore server, widely used as a
reference for API testing and demonstration
purposes.

GET /pet/{petId},
POST /pet, GET
/store/inventory, POST
/store/order

API Key, OAuth2

Home IoT API An API developed for the EatBacon IoT
project7, representing typical IoT operations
(lighting, temperature, etc.).

GET /devices, POST
/lighting/dimmers/{deviceId},
GET /temperature

None

success in addressing various software engineering prob-
lems [51], [52]. The model is configured with standard hy-
perparameters: 100 trees, Gini impurity for decision node
splitting, and the square root of the total number of features
(embedding logits) to determine the features considered at
each split.

After training, the random forest classifier is utilized to
predict the originating fuzzer for previously unseen payloads.
The payloads first pass through the pre-processing pipeline,
where sensitive information is anonymized. Then, they are
processed by the Transformers-based encoder-decoder archi-
tecture to generate embeddings, which are subsequently input
into the classifier to determine the predicted fuzzer class.

V. EXPERIMENTAL SETUP

A. Data and Tools
We developed five RESTful APIs, following the OpenAPI

specification, to answer our RQs. These APIs were designed to
cover a range of use cases, including simple CRUD operations,
OAuth2 flows, and IoT interactions, providing a diverse set
of scenarios for testing fuzzing techniques. Table I provides
an overview of these APIs, including the key operations,
descriptions, and the security mechanisms implemented. These
APIs provide a diverse set of test cases for enabling a fuzzer’s
ability to generate diverse payloads.

After creating these APIs, we executed the 4
fuzzers—APIFuzzer [22], Kiterunner [23], RESTler [20], and
Schemathesis [21]—on each API to generate extensive sets
of fuzzing payloads (see section II-B for fuzzer details). The
results of each fuzzer’s execution are summarised in Table II.
These payloads were analyzed to evaluate the overlap between
fuzzers and subsequently utilized for training and testing our
models.

Our approach’s predictions can result in 4 possible out-
puts corresponding to the 4 fuzzer classes. For multi-class
classification, where the goal is to classify payloads by their
originating fuzzer, we compute Precision, Recall, and F1-score
for each class (fuzzer) individually. We then report the macro-
averaged values across all classes, offering a comprehensive

TABLE II
OVERVIEW OF THE PAYLOADS GENERATED BY FUZZERS

Fuzzer Payloads (#) Payloads (%)

APIFuzzer 499,255 14.93%
Kiterunner 864,182 25.85%
RESTler 1,128,228 33.74%
Schemathesis 851,970 25.48%

Total 3,343,635 100.00%

assessment of the model’s overall performance. Additionally,
using the F1-score enables more objective and balanced con-
clusions about the classifier’s effectiveness.

B. Experimental Procedure

To address our research questions, we run the 4 fuzzers on
the 5 APIs we developed (Section V-A) to generate fuzzing
payloads. Each fuzzer is configured with its default setup,
providing a comprehensive set of payloads for each API. The
experimental process involves evaluating the overlap between
these payloads and training a classifier to determine the origin
fuzzer for each payload.

To answer RQ1, we analyze the generated payloads to assess
the extent of overlap across different fuzzers. Specifically, we
calculate the percentage of identical payloads shared between
each pair of fuzzers. This step is essential to quantify the
challenge of overlapping payloads when training a classifier to
distinguish between fuzzers. Results are presented as overlap
percentages in Table III, which provide insights into the degree
of similarity across fuzzers.

To answer RQ2, we train models on the generated pay-
loads using a combined deep learning and machine learning
architecture. The training and testing process involves k-fold
cross-validation (k = 5) to ensure robust evaluation, where we
train the classifier on four folds (80% of the dataset) and test
it on the remaining fold (i.e., the remaining 20%). Within each
iteration, 10% of the training data is reserved as the validation

TABLE III
PAYLOAD OVERLAP ANALYSIS (RQ1)

Fuzzer APIFuzzer Kiterunner RESTler Schemathesis
APIFuzzer - 0.03% 2.89% 1.29%
Kiterunner 0.02% - 0 0
RESTler 1.28% 0 - 12.86%
Schemathesis 0.76% 0 17.02% -

set to monitor the model’s performance during training, pre-
vent overfitting, and fine-tune hyperparameters. We measure
the classifier’s performance in accurately identifying the fuzzer
(origin) for each payload in the test set(s) using standard
prediction performance metrics—Precision, Recall, and F1-
score. This evaluation demonstrates the model’s effectiveness
in distinguishing fuzzers despite the overlapping in payloads.

VI. EXPERIMENTAL RESULTS

A. Payload Overlap Analysis (RQ1)

Table III presents the results of our payload overlap analysis
(RQ1), showing the extent of shared payloads between each
pair of fuzzers. It reports the total number of payloads gener-
ated by each fuzzer, along with the count and percentage of
overlapping payloads observed between different fuzzer pairs.

Starting with APIFuzzer (which generated 499,255 pay-
loads), we found that 134 payloads (0.03%) overlapped with
those generated by Kiterunner. This relatively minor over-
lap indicates that APIFuzzer and Kiterunner largely produce
distinct payloads. However, when comparing APIFuzzer with
RESTler, we observed a higher overlap of 14,462 payloads,
amounting to 2.89% of APIFuzzer’s total payloads and 1.28%
of RESTler’s payloads. Similarly, APIFuzzer shared 6,469
payloads (1.29%) with Schemathesis, indicating a moderate
level of similarity in the payloads generated by these fuzzers.

For Kiterunner, which generated 864,182 payloads, there
was no overlap with either RESTler or Schemathesis. This lack
of shared payloads highlights the uniqueness of Kiterunner’s
payload generation. Compared to the other fuzzers, Kiterun-
ner’s payloads are more distinct.

RESTler, responsible for generating 1,128,228 payloads,
exhibited a significant overlap with Schemathesis, sharing
145,039 payloads. This overlap accounts for 12.86% of
RESTler’s payloads and 17.02% of Schemathesis’s payloads,
suggesting that these two fuzzers produce notably similar
payloads when attacking the same APIs.

Finally, Schemathesis generated a total of 851,970 payloads.
Notably, there was no overlap between Schemathesis and
Kiterunner. This absence of shared payloads further under-
scores the distinctive patterns in payload generation between
these two fuzzers.

These results reveal varying degrees of overlap among
the fuzzers, highlighting distinct patterns in their payload
generation strategies. RESTler and Schemathesis show the
highest similarity, with a significant portion of their payloads
overlapping, suggesting that these fuzzers target vulnerability
identification in a similar way or use comparable techniques

to generate payloads. In contrast, Kiterunner stands out with
minimal overlap, indicating a more unique approach to pay-
load generation that sets it apart in terms of diversity. This
uniqueness in Kiterunner’s payloads suggests that it may
cover different testing dimensions or employ distinct strategies
compared to the other fuzzers, making it less likely to generate
redundant test cases.

To better understand the significant overlap between
RESTler and Schemathesis (≈17%), we conducted a payload
analysis. Our investigation revealed that both fuzzers employ
schema-driven strategies, particularly focusing on edge cases
defined by OpenAPI specifications. This results in convergent
payloads when targeting APIs with similar structures. For
example, RESTler and Schemathesis often generate similar
boundary-value inputs for integer parameters, as these are
common test cases derived from schema constraints.

Summary of Payload Overlap Analysis (RQ1)

RQ1: How much overlap exists between the payloads gen-
erated by different API fuzzers?
Our analysis shows that payload overlap varies among
fuzzers. RESTler and Schemathesis exhibit the highest
overlap, suggesting similar methodologies, while Kiterunner
has minimal overlap, indicating unique payload generation.
These findings reflect distinct approaches among fuzzers in
targeting API vulnerabilities.

B. Fuzzer Classification Performance (RQ2)

Table IV summarizes the classification performance
achieved by our combined deep learning and machine learn-
ing architecture in identifying the originating fuzzer of each
payload. The metrics—precision, recall, and F1-score—offer
insight into the model’s accuracy across each fuzzer class,
highlighting the strengths and weaknesses in distinguishing
between fuzzers based on their payload characteristics.

Starting with APIFuzzer, the model achieved a precision
of 0.81, a recall of 0.94, and an F1-score of 0.87. These
results indicate that while the model is relatively accurate in
identifying APIFuzzer’s payloads, with a high recall indicating
most APIFuzzer payloads are correctly classified, the slightly
lower precision suggests a few misclassifications of other
fuzzers as APIFuzzer. This balance between precision and
recall results in an F1-score of 0.87, demonstrating overall
reliable classification for APIFuzzer.

For Kiterunner, the model exhibited near-perfect perfor-
mance, achieving a precision of 0.99, recall of 1.0, and
F1-score of 0.99. This high level of accuracy suggests that
Kiterunner payloads have unique features that are easily rec-
ognizable by the model, resulting in minimal misclassifica-
tions. The model’s performance with Kiterunner underscores
Kiterunner’s distinctive payload characteristics, as seen previ-
ously in the low overlap with other fuzzers.

The model’s performance on RESTler payloads achieved
a precision of 0.83, recall of 0.97, and F1-score of 0.90.
With a relatively high recall, most RESTler payloads were

TABLE IV
FUZZER CLASSIFICATION PERFORMANCE (RQ2)

Fuzzer Precision Recall F1-score

APIFuzzer 0.81 0.94 0.87
Kiterunner 0.99 1.00 0.99
RESTler 0.83 0.97 0.90
Schemathesis 0.96 0.64 0.77
Macro Avg 0.90 0.89 0.88

accurately identified, but the slightly lower precision indicates
that a few payloads from other fuzzers were misclassified as
RESTler. This moderate level of precision, combined with a
high recall, results in a solid F1-score of 0.90, reflecting the
model’s effectiveness in classifying RESTler payloads, though
with some overlapping characteristics with other fuzzers.

Schemathesis presented a different profile, with a high
precision of 0.96 but a lower recall of 0.64, resulting in an F1-
score of 0.77. This high precision indicates that the model’s
predictions of a payload as Schemathesis are highly accurate;
however, the lower recall indicates that many Schemathesis
payloads were missed, potentially due to their similarity with
RESTler payloads, as observed in the overlap analysis in
RQ1. The F1-score of 0.77 reflects this balance, indicating
room for improvement in accurately capturing the breadth of
Schemathesis payload characteristics.

The Macro Average scores across all fuzzers show an
overall precision of 0.90, recall of 0.89, and F1-score of
0.88. These averages highlight that, while the models perform
well in distinguishing between fuzzers, certain fuzzers (for
instance, Schemathesis) present a greater challenge due to
shared characteristics with other fuzzers.

We conducted an error analysis to identify common mis-
classifications. For instance, 24.91% of Schemathesis payloads
were misclassified as RESTler, reflecting the high overlap
identified in RQ1. This aligns with Schemathesis’s relatively
low recall of 0.64. Our analysis showed that Schemathesis
payloads often share significant similarities with RESTler
payloads, especially in parameters influenced by schema con-
straints, such as boundary values for integers. These similari-
ties in parameter structures and values make it difficult for the
classifier to differentiate between the two fuzzers effectively.
Conversely, RESTler payloads were rarely misclassified as
Schemathesis (0.56% misclassified), supporting its high recall
of 0.97. Similarly, Kiterunner and APIFuzzer showed excellent
performance, with Kiterunner achieving near-perfect recall and
precision due to its distinct payload generation strategy.

Summary of Fuzzer Classification Performance (RQ2)

RQ2: How well can a combined deep learning and ma-
chine learning architecture distinguish between payloads to
identify their fuzzer origins, despite overlapping payloads?
Our classification model performs well across fuzzers,
achieving high precision and recall overall. Kiterunner and
APIFuzzer are identified with high accuracy, while RESTler
and Schemathesis present more challenges due to overlap-
ping payload characteristics.

VII. DISCUSSION

Our study introduces a new approach to identifying the
attacker’s tooling, focusing on fuzzers. To this end, we focus
on the origins of fuzzed payloads, aiming to enhance cyber-
security defenses by tracing payloads back to the fuzzers; and
potentially, the attack groups behind them. Our findings, in ad-
dition to validating the feasibility of fuzzer identification based
on payloads, also reveal critical insights into the characteristics
of different fuzzers, offering implications for threat attribution
and strategic defense planning. Given the randomized way that
fuzzers work, payload identification is far more challenging
than, e.g., trying to identify tools that deliver static payloads.

The payload overlap analysis reveals distinct patterns among
the four fuzzers, highlighting a substantial overlap between
RESTler and Schemathesis, while APIFuzzer and Kiterunner
exhibit more distinct payload patterns. For instance, RESTler
and Schemathesis share significant similarities, due to common
approaches in payload generation and targeted vulnerabil-
ity types, which suggests that these fuzzers target similar
aspects of API security. Conversely, Kiterunner stands out
with minimal overlap with other fuzzers, implying a unique
methodology targeting different vulnerabilities. While a high
overlap indicates commonly exploited API weaknesses or
similar algorithms to generate the payloads, unique payloads
suggest novel or specialized attack vectors that warrant par-
ticular attention.

The classification performance achieved by our combined
deep learning and machine learning architecture underscores
the potential for accurately identifying fuzzers based on pay-
load characteristics. The high precision and recall scores for
APIFuzzer and Kiterunner highlight the model’s capacity to
differentiate payloads, especially for fuzzers with distinctive
patterns. However, the moderate recall for Schemathesis indi-
cates future works to fully distinguish between fuzzers with
overlapping payload characteristics, such as RESTler and
Schemathesis. While the current study focuses on payload
content for classification, additional model features could
potentially improve accuracy by capturing behavioral patterns.
For example, analyzing the timing and frequency of payload
generation may reveal insights into the operational charac-
teristics of different fuzzers. Prior work in network traffic
analysis [53] has demonstrated the utility of such temporal
features in improving classification tasks. Exploring these
features in the future can potentially help differentiate between
fuzzers with overlapping payload content.

An important implication of fuzzer identification lies in its
potential to strengthen strategic threat attribution and defense
planning. In cybersecurity, different attack groups often favor
specific tools and techniques aligned with their objectives,
such as data theft, ransomware, or API exploitation. This
comes as a result of the specialization of some groups in
specific attack stages. For instance, among others, there are
initial access brokers, ransomware operators, carders, and
malware authors. Beyond their attack specialization, each
threat actor uses its tooling [54]. In this regard, our work
focuses on initial access brokers that attempt to penetrate
an organization by exploiting an open API. By accurately
identifying the fuzzer used in an attack, defenders can trace
the intrusion back to particular groups with known goals
and tactics, creating a framework for threat intelligence that
aligns defense strategies with anticipated attacker behavior.
For instance, if a detected payload is traced back to a fuzzer
typically associated with an attack group focused on data theft,
the blue teams may prioritize data protection and monitor
possible exfiltration attempts. Conversely, if the identified
fuzzer aligns with groups known for ransomware or extortion,
an organization could preemptively secure backups, increase
access controls, and prepare incident response protocols for
rapid action. This level of attack attribution and preemptive
defense planning enables security teams to go beyond a
generic response, adopting targeted defenses that address the
specific goals and methodologies of the attacker. In a dynamic
threat landscape, this approach can enhance the organization’s
resilience against multi-stage, complex attacks by ensuring
that defense mechanisms are tailored to address the particular
risks associated with different attack groups. Furthermore,
by tracing back to specific fuzzer tools, organizations can
track trends in attack techniques, observing which fuzzers or
payload types are becoming more prevalent and potentially
forecasting emerging threats based on the usage patterns of
different fuzzers across various attack groups.
Limitations. While our results demonstrate our architecture’s
effectiveness in fuzzer identification, certain limitations should
be acknowledged. Firstly, our dataset consists of 4 fuzzers
and 5 API cases, which, while diverse, may limit the gen-
eralizability of our findings. Future research could expand
this dataset to include additional fuzzers and APIs, which
can provide a broader foundation for model training and
enable further refinement of the classification model. Secondly,
our current approach focuses primarily on the content of
the payloads. Incorporating supplementary features such as
request frequency, timing, or metadata, could further en-
hance the model’s ability to distinguish fuzzers, particularly
those with overlapping payload patterns. This could increase
robustness in real-world scenarios where additional context
beyond payload content may improve fuzzer identification.
Thirdly, our methodology relies on payload preprocessing that
may influence model performance. For example, we used
the maximum payload length (120 tokens) observed in the
dataset as the sequence length to ensure the model captures
the full range of payload features. While this approach avoids

constraining sequence length artificially, it may not generalize
to datasets with significantly longer or more variable payloads.
Fourthly, the evaluation metrics we use—precision, recall, and
F1-score—are well-suited for classification tasks but may not
capture all nuances of performance. Nonetheless, these metrics
are standard in classification tasks and provide a reliable
measure of our model’s effectiveness in identifying fuzzers.
Additionally, our overlap analysis considers only payload con-
tent and does not incorporate behavioral features like timing or
frequency, which could further inform classification accuracy.
Finally, while our Transformers-based encoder-decoder model
has proven effective for this classification task, alternative
architectures could be explored to capture even finer-grained
differences in payloads. Moreover, deploying a classification
model in real-world settings poses challenges, particularly in
achieving near-real-time predictions. Our initial tests indicate
that our architecture takes approximately 100ms to process
a single payload and produce a prediction (i.e., identify the
fuzzer) on standard hardware. While this is suitable for low-
traffic environments, it may present limitations for high-traffic
APIs where rapid processing of numerous payloads is required.

VIII. CONCLUSIONS

In this study, we introduced a method for classifying API
fuzzers by analyzing the payloads they generate, aiming to
enhance defensive strategies for API security. By evaluating
four prominent fuzzers—APIFuzzer, Kiterunner, RESTler, and
Schemathesis—across a diverse set of APIs, we demonstrated
that identifying fuzzers based on payload characteristics is
feasible, even with considerable overlap in payload content
between fuzzers like RESTler and Schemathesis. Our results
show that a combined deep learning and machine learning
architecture achieves high classification accuracy, effectively
distinguishing fuzzers with notable precision and recall, par-
ticularly for fuzzers with unique payload patterns, such as
Kiterunner.

The payload overlap analysis highlighted that while some
fuzzers produce unique payloads, others share significant over-
lap, which can complicate fuzzer classification. Our approach
successfully overcomes these complexities by focusing on
each payload’s distinct behavioral and structural elements.
This enables a more nuanced understanding of each fuzzer’s
methodology, providing valuable insights into how different
tools target vulnerabilities in APIs.

This work also has implications for broader threat intel-
ligence and attack attribution efforts. Identifying the fuzzer
responsible for a set of API payloads, and in general, the
adversary’s tooling, can help trace back to specific attack
groups, many of which use consistent tooling and techniques.
With this knowledge, defenders can tailor their response to the
tactics of particular groups—whether data theft, ransomware,
or extortion-focused—thereby strengthening their security pos-
ture. Future work may expand upon these findings by incor-
porating additional features, such as temporal and frequency-
based analysis, to further improve fuzzer classification accu-

racy and resilience against emerging threats but also extend to
other tools that adversaries may use in other attack stages.

IX. DATA AVAILABILITY

The dataset generated and analyzed during our study, includ-
ing all payloads produced by APIFuzzer, Kiterunner, RESTler,
and Schemathesis, is available in our GitHub repository8. The
source code and trained models of our combined deep learning
and machine learning architecture, along with supplementary
analysis scripts, are also available in this repository.

REFERENCES

[1] Lockheed Martin, “The Cyber Kill Chain,” https://www.lockheedmartin.
com/en-us/capabilities/cyber/cyber-kill-chain.html, 2024.

[2] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G.
Pennington, and C. B. Thomas, “Mitre att&ck: Design and philosophy,”
in Technical report. The MITRE Corporation, 2018.

[3] D. Bianco, “The pyramid of pain,” https://detect-respond.blogspot.com/
2013/03/the-pyramid-of-pain.html, 2013.

[4] K. Sheridan, “Cobalt Strike & Metasploit tools were attacker fa-
vorites in 2020,” https://www.darkreading.com/cyber-risk/cobalt-strike-
metasploit-tools-were-attacker-favorites-in-2020, 2021.

[5] National Cyber Security Cenre, “Further ttps associated with svr cyber
actors,” https://www.ncsc.gov.uk/files/Advisory%20Further%20TTPs%
20associated%20with%20SVR%20cyber%20actors.pdf, 2021.

[6] M. Harbison and P. Renals, “When pentest tools go brutal: Red-teaming
tool being abused by malicious actors,” https://unit42.paloaltonetworks.
com/brute-ratel-c4-tool/, 2022.

[7] C. Liang, Q. Wei, J. Du, Y. Wang, and Z. Jiang, “Survey of source code
vulnerability analysis based on deep learning,” Comput. Secur., vol. 148,
p. 104098, 2025.

[8] A. Garg, R. Degiovanni, M. Jimenez, M. Cordy, M. Papadakis,
and Y. L. Traon, “Learning from what we know: How to
perform vulnerability prediction using noisy historical data,” Empir.
Softw. Eng., vol. 27, no. 7, p. 169, 2022. [Online]. Available:
https://doi.org/10.1007/s10664-022-10197-4

[9] H. J. Abdelnur, R. State, and O. Festor, “Kif: a stateful sip fuzzer,” in
Proceedings of the 1st international conference on Principles, systems
and applications of IP telecommunications, 2007, pp. 47–56.

[10] K. Dewey, J. Roesch, and B. Hardekopf, “Language fuzzing using
constraint logic programming,” in Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, 2014, pp.
725–730.

[11] ——, “Fuzzing the rust typechecker using clp (t),” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2015, pp. 482–493.

[12] P. Godefroid, R. Singh, and H. Peleg, “Machine learning for input
fuzzing,” Apr. 20 2021, uS Patent 10,983,853.

[13] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,
“Automatic text input generation for mobile testing,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 643–653.

[14] X. Liu, X. Li, R. Prajapati, and D. Wu, “Deepfuzz: Automatic generation
of syntax valid c programs for fuzz testing,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 1044–
1051.

[15] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security, 2017, pp. 2329–2344.

[16] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.
1032–1043.

[17] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 679–696.

[18] Peach, “Peach fuzzer,” https://about.gitlab.com/solutions/security-
compliance/, 2024, last accessed 2024-10-17.

8https://github.com/garghub/fuzzing

[19] SPIKE, “Spike fuzzer,” http://resources.infosecinstitute.com/
fuzzerautomation-with-spike/, 2024, last accessed 2024-10-17.

[20] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019, pp. 748–758.

[21] Z. Hatfield-Dodds and D. Dygalo, “Deriving semantics-aware fuzzers
from web API schemas,” in 44th IEEE/ACM International Conference
on Software Engineering: Companion Proceedings, ICSE Companion
2022, Pittsburgh, PA, USA, May 22-24, 2022. ACM/IEEE, 2022, pp.
345–346. [Online]. Available: https://doi.org/10.1145/3510454.3528637

[22] P. Kiss, “Apifuzzer,” https://pypi.org, April 2022, accessed: 2024-10-18.
[23] S. Yeoh, “Kiterunner,” AssetNote, April 2021, accessed: 2021-11-04.
[24] I. Goncharov, “Apis.guru - a directory of openapi (swagger)

specifications,” accessed: 2024-10-30. [Online]. Available: https:
//apis.guru/

[25] O. Hartig and J. Pérez, “Semantics and complexity of graphql,” in
Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1155–
1164.

[26] D. R. MacIver, Z. Hatfield-Dodds et al., “Hypothesis: A new approach
to property-based testing,” Journal of Open Source Software, vol. 4,
no. 43, p. 1891, 2019.

[27] N. Naik, P. Jenkins, P. Grace, and J. Song, “Comparing attack models for
it systems: Lockheed martin’s cyber kill chain, mitre att&ck framework
and diamond model,” in 2022 IEEE International Symposium on Systems
Engineering (ISSE), 2022, pp. 1–7.

[28] L. M. Fadzil, S. Manickam, and M. A. Al-Shareeda, “A review of an
emerging cyber kill chain threat model,” in 2023 Second International
Conference on Advanced Computer Applications (ACA), 2023, pp. 157–
161.

[29] N. Rani, B. Saha, and S. K. Shukla, “A comprehensive survey of
advanced persistent threat attribution: Taxonomy, methods, challenges
and open research problems,” CoRR, vol. abs/2409.11415, 2024.
[Online]. Available: https://doi.org/10.48550/arXiv.2409.11415

[30] F. Skopik and T. Pahi, “Under false flag: using technical artifacts
for cyber attack attribution,” Cybersecur., vol. 3, no. 1, p. 8, 2020.
[Online]. Available: https://doi.org/10.1186/s42400-020-00048-4

[31] G. Zhao, K. Xu, L. Xu, and B. Wu, “Detecting apt malware infections
based on malicious dns and traffic analysis,” IEEE access, vol. 3, pp.
1132–1142, 2015.

[32] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic
classification using convolutional neural network for representation
learning,” in 2017 International conference on information networking
(ICOIN). IEEE, 2017, pp. 712–717.

[33] Z. Fu, M. Liu, Y. Qin, J. Zhang, Y. Zou, Q. Yin, Q. Li, and H. Duan,
“Encrypted malware traffic detection via graph-based network analysis,”
in Proceedings of the 25th International Symposium on Research in
Attacks, Intrusions and Defenses, 2022, pp. 495–509.

[34] H. Liu, B. Lang, M. Liu, and H. Yan, “Cnn and rnn based payload
classification methods for attack detection,” Knowledge-Based Systems,
vol. 163, pp. 332–341, 2019.

[35] Z. Liu, Y. Fang, C. Huang, and J. Han, “Graphxss: an efficient xss
payload detection approach based on graph convolutional network,”
Computers & Security, vol. 114, p. 102597, 2022.

[36] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk,
“On learning meaningful code changes via neural machine translation,”
in 2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE). IEEE, 2019, pp. 25–36.

[37] A. Garg, M. Ojdanic, R. Degiovanni, T. T. Chekam, M. Papadakis, and
Y. L. Traon, “Cerebro: Static subsuming mutant selection,” IEEE Trans.
Software Eng., vol. 49, no. 1, pp. 24–43, 2023. [Online]. Available:
https://doi.org/10.1109/TSE.2022.3140510

[38] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. E. P.
Reyes, M. Shyu, S. Chen, and S. S. Iyengar, “A survey on deep
learning: Algorithms, techniques, and applications,” ACM Comput.
Surv., vol. 51, no. 5, pp. 92:1–92:36, 2019. [Online]. Available:
https://doi.org/10.1145/3234150

[39] A. Garg, R. Degiovanni, M. Jimenez, M. Cordy, M. Papadakis, and Y. L.
Traon, “Learning to predict vulnerabilities from vulnerability-fixes:
A machine translation approach,” CoRR, vol. abs/2012.11701, 2020.
[Online]. Available: https://arxiv.org/abs/2012.11701

[40] J. Song, S. Kim, and S. Yoon, “Alignart: Non-autoregressive neural
machine translation by jointly learning to estimate alignment and
translate,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual

Event / Punta Cana, Dominican Republic, 7-11 November, 2021,
M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. Association
for Computational Linguistics, 2021, pp. 1–14. [Online]. Available:
https://doi.org/10.18653/v1/2021.emnlp-main.1

[41] D. Britz, A. Goldie, M. Luong, and Q. V. Le, “Massive exploration of
neural machine translation architectures,” CoRR, vol. abs/1703.03906,
2017. [Online]. Available: http://arxiv.org/abs/1703.03906

[42] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Sys-
tems 2014, December 8-13 2014, Montreal, Quebec, Canada, Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
Eds., 2014, pp. 3104–3112.

[43] A. Garg, R. Degiovanni, M. Papadakis, and Y. L. Traon, “Vulnerability
mimicking mutants,” CoRR, vol. abs/2303.04247, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2303.04247

[44] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J.
Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” CoRR, vol. abs/1603.04467, 2016. [Online].
Available: http://arxiv.org/abs/1603.04467

[45] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations
using RNN encoder–decoder for statistical machine translation,” in
Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), A. Moschitti, B. Pang, and
W. Daelemans, Eds. Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 1724–1734. [Online]. Available: https:
//aclanthology.org/D14-1179

[46] A. Shewalkar, D. Nyavanandi, and S. A. Ludwig, “Performance
evaluation of deep neural networks applied to speech recognition: Rnn,
LSTM and GRU,” J. Artif. Intell. Soft Comput. Res., vol. 9, no. 4,
pp. 235–245, 2019. [Online]. Available: https://doi.org/10.2478/jaiscr-
2019-0006

[47] A. Garg, R. Degiovanni, M. Papadakis, and Y. L. Traon, “On
the coupling between vulnerabilities and llm-generated mutants: A
study on vul4j dataset,” in IEEE Conference on Software Testing,
Verification and Validation, ICST 2024, Toronto, ON, Canada,
May 27-31, 2024. IEEE, 2024, pp. 305–316. [Online]. Available:
https://doi.org/10.1109/ICST60714.2024.00035

[48] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,
“End-to-end attention-based large vocabulary speech recognition,” in
2016 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016. IEEE,
2016, pp. 4945–4949.

[49] R. Roelofs, V. Shankar, B. Recht, S. Fridovich-Keil, M. Hardt, J. Miller,
and L. Schmidt, “A meta-analysis of overfitting in machine learning,”
in Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Gar-
nett, Eds., 2019, pp. 9175–9185.

[50] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324

[51] P. A. A. Resende and A. C. Drummond, “A survey of random forest
based methods for intrusion detection systems,” ACM Comput. Surv.,
vol. 51, no. 3, pp. 48:1–48:36, 2018.

[52] A. Garg, R. Degiovanni, F. Molina, M. Cordy, N. Aguirre, M. Papadakis,
and Y. L. Traon, “Enabling efficient assertion inference,” in 34th IEEE
International Symposium on Software Reliability Engineering, ISSRE
2023, Florence, Italy, October 9-12, 2023. IEEE, 2023, pp. 623–634.
[Online]. Available: https://doi.org/10.1109/ISSRE59848.2023.00039

[53] J. Koumar, K. Hynek, and T. Cejka, “Network traffic classification based
on single flow time series analysis,” in 19th International Conference
on Network and Service Management, CNSM 2023, Niagara Falls, ON,
Canada, October 30 - Nov. 2, 2023. IEEE, 2023, pp. 1–7.

[54] C. Patsakis, D. Arroyo, and F. Casino, “The malware as a service ecosys-
tem,” in Malware: Handbook of Prevention and Detection. Springer,
2024, pp. 371–394.

Aayush Garg received his Master’s degree in Com-
puter Science with a focus on Security from Boston
University, USA, and completed his PhD in Com-
puter Science, specializing in Quality Assurance
and Deep Learning, at the University of Luxem-
bourg. His early career as a Software Engineer in
the Fintech sector provided a solid foundation in
Software Development and QA. Building on this
expertise, he transitioned to a Researcher role at the
Interdisciplinary Centre for Security, Reliability, and
Trust (SnT), University of Luxembourg. Currently,

Aayush is a Research and Technology Scientist at the Luxembourg Institute
of Science and Technology (LIST), Luxembourg. He actively contributes to
National and European research initiatives, and his work appears frequently
in top international conferences and journals. His primary research interests
include Software Security, Quality Assurance, and Deep Learning.

Constantinos Patsakis received his B.Sc. in Math-
ematics from the University of Athens, Greece, an
M.Sc. in Information Security from Royal Holloway,
University of London, and a PhD in Cryptography
and Malware from the University of Piraeus, Greece.
In the past, he has worked as a researcher at the
UNESCO Chair in Data Privacy, at Rovira i Virgili,
at Trinity College, Dublin, and the Luxembourg In-
stitute of Science and Technology. He is currently a
Professor at the University of Piraeus and an Adjunct
Researcher at the Athena Research and Innovation

Center. He has authored numerous publications in prestigious peer-reviewed
international conferences and journals and participated in several national and
European Research and Development projects. His main areas of research
include cryptography, security, privacy, blockchains, and cybercrime.

Zanis Ali Khan is an R&T Scientist at the Luxem-
bourg Institute of Science and Technology (LIST),
where he specializes in vulnerability detection and
patching. He earned his PhD in Computer Science
from the University of Luxembourg, focusing on
log analysis and anomaly detection. Following his
PhD, Zanis undertook a postdoctoral research posi-
tion to further investigate methods for identifying
and addressing system anomalies. He also holds
a Master’s degree in Computer Engineering from
Sapienza University of Rome, Italy. His research

interests include log parsing, vulnerability detection, vulnerability patching,
and anomaly detection.

Qiang Tang received his B.Sc. in Applied Mathe-
matics from the Yantai University, China, an M.Sc.
in Information Security and Cryptography from
Peking University, China, and a PhD in Informa-
tion Security and Cryptography from Royal Hol-
loway, University of London, UK. In the past,
he has worked as a researcher at the École Nor-
male Supérieure (Paris), France, at the University
of Twente, the Netherlands, at the University of
Luxembourg, Luxembourg. He is currently a Group
Leader at the Luxembourg Institute of Science and

Technology (LIST), Luxembourg. He has authored many research papers in
prestigious peer-reviewed international conferences and journals and partici-
pated in several national and European Research and Development projects.
His main areas of research include applied cryptography, privacy enhancing
technologies (PETs), and the security and privacy issues in AI and Telecom-
munication.

