
Vulnerability Mimicking Mutants
Aayush Garg

University of Luxembourg
Luxembourg

aayush.garg@uni.lu

Renzo Degiovanni
University of Luxembourg

Luxembourg
renzo.degiovanni@uni.lu

Mike Papadakis
University of Luxembourg

Luxembourg
michail.papadakis@uni.lu

Yves Le Traon
University of Luxembourg

Luxembourg
yves.letraon@uni.lu

Abstract—With the increasing release of powerful language
models trained on large code corpus (e.g. CodeBERT was
trained on 6.4 million programs), a new family of mutation
testing tools has arisen with the promise to generate more
“natural” mutants in the sense that the mutated code aims
at following the implicit rules and coding conventions typically
produced by programmers. In this paper, we study to what extent
the mutants produced by language models can semantically
mimic the observable behavior of security-related vulnerabilities
(a.k.a. Vulnerability-mimicking Mutants), so that designing test
cases that are failed by these mutants will help in tackling
mimicked vulnerabilities. Since analyzing and running mutants
is computationally expensive, it is important to prioritize those
mutants that are more likely to be vulnerability mimicking
prior to any analysis or test execution. Taking this into account,
we introduce VMMS, a machine learning based approach that
automatically extracts the features from mutants and predicts the
ones that mimic vulnerabilities. We conducted our experiments
on a dataset of 45 vulnerabilities and found that 16.6% of the
mutants fail one or more tests that are failed by 88.9% of the
respective vulnerabilities. More precisely, 3.9% of the mutants
from the entire mutant set are vulnerability-mimicking mutants
that mimic 55.6% of the vulnerabilities. Despite the scarcity,
VMMS predicts vulnerability-mimicking mutants with 0.63 MCC,
0.80 Precision, and 0.51 Recall, demonstrating that the features
of vulnerability-mimicking mutants can be automatically learned
by machine learning models to statically predict these without
the need of investing effort in defining such features.

I. INTRODUCTION

Research and practice with mutation testing have shown
that it is one of the most powerful testing techniques [3],
[22], [27], [55]. Apart from testing the software in general,
mutation testing has been proven to be useful in supporting
many software engineering activities which include improving
test suite strength [2], [14], selecting quality software speci-
fications [41], [42], [61], among others. Though, its use in
tackling software security issues has received little attention. A
few works focused on model-based testing [10], [43] and pro-
posed security-specific mutation operators to inject potential
security-specific leaks into models that can lead to test cases to
find attack traces in internet protocol implementations. Other
works proposed new security-specific mutation operators that
aim to mimic common security bug patterns in Java [40]
and C [45]. These works empirically showed that traditional
mutation operators are unlikely to exercise security-related
aspects of the applications and thus, the proposed operators
attempt to convert non-vulnerable code to vulnerable by mim-
icking common real-world security bugs. However, pattern-

based approaches have two major limitations. On one hand, the
design of security-specific mutation operators is not a trivial
task since it requires manual analysis and comprehension of
the vulnerability classes that cannot be easily expanded to the
extensive set of realistic vulnerability types (e.g. they restrict
to memory [40] and web application [45] bugs). On the other
hand, these mutation operators can alter the program semantics
in ways that may not be convincing for developers as they
may perceive them as unrealistic/uninteresting [6], thereby
hindering the usability of the method.

With the aim of producing more realistic and natural code,
a new family of tools based on language models has re-
cently arisen. Currently, language models are employed for
code completion [39], test oracle generation [62], program
repair [15], among many other software engineering tasks. Par-
ticularly, language models are been used for mutant generation
yielding to several mutation testing tools such as SemSeed [53]
and DeepMutation [63]. While these tools are subject to
expensive training on datasets containing thousands of buggy
code examples, there is an increasing interest in using pre-
trained language models for mutant generation [5], [21], [56],
e.g. a mutation testing tool µBERT [21] uses CodeBERT [24]
to generate mutants by masking and replacing tokens with
CodeBERT predictions.

Since pre-trained language models were trained on large
code corpus (e.g. CodeBERT was trained on more than 6.4
million programs), their predictions are typically considered
representative of the code produced by programmers. Hence,
we wonder:
Are mutation testing tools using pre-trained language models
effective at producing mutants that semantically mimic the
behaviour of software vulnerabilities?

A positive answer to this question can be a promising
prospect for the use of these security-related mutants to
form an initial step for defining security-conscious testing
requirements. We believe that these requirements are particu-
larly useful when building regression test suites for security
intensive applications.

The task of analyzing the mutants, and writing and exe-
cuting tests, in general, is considered expensive. Despite a
large number of mutants created, it is well known that many
of them are of low utility, i.e., they do not contribute much
to the testing process [2], [31], [37]. Due to this, several
mutant selection techniques have been proposed to make
mutation testing more cost-effective [13], [38], [48], [50], [70].

ar
X

iv
:2

30
3.

04
24

7v
1

 [
cs

.S
E

]
 7

 M
ar

 2
02

3

Therefore, to make our approach useful in practice, we need
to filter and select only specific mutants that resemble the
behavior of security issues, especially vulnerabilities.

Taking this into account, we propose to enable security-
conscious mutation testing by focusing on a minimal set of
mutants that rather behave similarly to vulnerabilities a.k.a.
Vulnerability-mimicking Mutants. Such mutants are the ones
that semantically mimic the observable behavior of vulnera-
bilities, i.e., a mutant is vulnerability-mimicking when it fails
the same tests that are failed by the vulnerability that it mimics,
proving its existence in the software a.k.a. PoV (Proof of
Vulnerability). Using Vulnerability-mimicking Mutants as test
requirements can guide testers to design test suites for tackling
vulnerabilities similar to the mimicked ones.

We conducted experiments on a dataset of 45 reproducible
vulnerabilities, with severity ranging from high to medium,
and found that for 40 out of 45 vulnerabilities, (i.e., for
88.9% vulnerabilities) there exists at least one mutant that
fails one or more tests that are also failed by the respective
vulnerabilities. More precisely, 3.9% of the mutants from
the entire mutant set are vulnerability-mimicking. Despite
being few in quantity, these Vulnerability-mimicking Mutants
semantically mimic 55.6% of the vulnerabilities, i.e., these
mutants fail the “same” tests that are failed by the respective
vulnerabilities that they mimicked.

Since such mutants are very few among the large set of
mutants generated, we propose VMMS1, a machine learn-
ing based approach that automatically learns the features
of Vulnerability-mimicking Mutants to identify these mutants
statically. VMMS is very accurate in predicting Vulnerability-
mimicking Mutants with 0.63 MCC, 0.80 Precision, and 0.51
Recall. This demonstrates that the features of Vulnerability-
mimicking Mutants can be automatically learned by machine
learning models to statically predict these without the need of
investing effort in manually defining any related features. We
believe that Vulnerability-mimicking Mutants can help in build-
ing regression test suites for security intensive applications,
and can be particularly useful in evaluating and comparing
fuzzing or other security testing tools. In summary, our paper
makes the following contributions:

1) We show that mutation testing tools based on language
models can generate mutants that mimic real software
vulnerabilities. 3.6% of the mutants semantically mimic
25 out of 45 studied vulnerabilities.

2) We also show that for most of the vulnerabilities (40 out
of 45) there exists at least one mutant that fails the one
test finding the vulnerability (although not mimicking it).

3) We propose VMMS, a machine-learning based approach
for identifying Vulnerability-mimicking Mutants. Our re-
sults show that VMMS is very accurate in its predictions
as it obtains 0.63 MCC, 0.80 Precision, and 0.51 Recall.

1Vulnerability Mimicking Mutant Selector (VMMS)

II. BACKGROUND

A. Mutation Testing

Mutation testing is a popular fault-based testing tech-
nique [3], [22]. It works by introducing slight syntactic
modifications to the original program, a.k.a., mutants. These
mutants are artificially seeded faults that aim at simulating
bugs present in the software. The tester designs test cases in
order to kill these mutants, i.e., to distinguish the observable
behavior between a mutant and the original program. Thus,
selecting specific mutants enables testing specific structures
of a given language that the testing process seeks [27]. Due to
this flexibility, Mutation Testing is used to guide test genera-
tion [51], to perform test assessment [49], to uncover subtle
faults [14], and to perform strong assertion inference [41].

B. Vulnerabilities

Common Vulnerability Exposures (CVE) [20] defines a
security vulnerability as “a flaw in a software, firmware,
hardware, or service component resulting from a weakness
that can be exploited, causing a negative impact to the
confidentiality, integrity, or availability of an impacted com-
ponent or components.”. The inadvertence of a developer
or insufficient knowledge of defensive programming usually
causes these weaknesses. Vulnerabilities are usually reported
in publicly available databases to promote their disclosure and
fix. One such example is National Vulnerability Database,
aka NVD [46]. NVD is the U.S. government repository of
standards based vulnerability management data. All vulner-
abilities in the NVD have been assigned a CVE (Common
Vulnerabilities and Exposures) identifier. The Common Vul-
nerabilities and Exposures (CVE) Program’s primary purpose
is to uniquely identify vulnerabilities and to associate specific
versions of codebases (e.g., software and shared libraries)
to those vulnerabilities. The use of CVEs ensures that two
or more parties can confidently refer to a CVE identifier
(ID) when discussing or sharing information about a unique
vulnerability.

C. Vulnerability-mimicking Mutants

The issues related to security, especially vulnerabilities have
received less attention in the mutation testing literature. As a
result, despite its flexibility, mutation testing has not been used
as the first line of defense against vulnerabilities. Also, there
is no clear definition of Vulnerability-mimicking Mutants, (i.e.,
mutants that mimic the vulnerability behavior) to focus on, in
order to perform mutation testing to guarantee the software
under analysis is vulnerability-free. Therefore, for the purpose
of this study, we use the following definition:
A mutant is vulnerability-mimicking if it fails exactly the same
tests that are failed by the vulnerability it mimics, hence having
the same observable behavior as the vulnerability.

Since a mutant is a slight syntactic modification to the orig-
inal program, a large number of mutants are generated during
mutation testing which requires analysis and execution with
the related test suites. This introduces a problem of identifying

Vulnerability-mimicking Mutants among a huge pile of mu-
tants. In our dataset, Vulnerability-mimicking Mutants are 3.9%
of the entire lot. To deal with the problem of identification of
Vulnerability-mimicking Mutants, we introduce VMMS, a deep
learning based approach that predicts Vulnerability-mimicking
Mutants without requiring any dynamic analysis.

D. Vul4J

There exist several vulnerability datasets for many program-
ming languages [7], [23], [25]. However, they do not contain
bug-witnessing test cases to reproduce vulnerabilities, i.e.,
Proof of Vulnerability (PoV). Such test cases are essential for
this study in order to determine whether generated mutants are
Vulnerability-mimicking Mutants, as explained in the section
above. In general, it is hard to reproduce exploitation (i.e.,
PoV) for vulnerabilities. Vul4J [12] is a dataset of real vulner-
abilities, with the corresponding fixes and the PoV test cases,
that we utilized for this study. Although, due to a few test cases
failing even after applying the provided vulnerability-fixes, we
had to exclude a few vulnerabilities. In total, we conducted this
study on 45 vulnerabilities. In table I, we mention the details of
considered vulnerabilities that include CVE ID, CWE ID and
description, Severity level (that ranges from 0 to 10, provided
by National Vulnerability Database [46]), number of Files and
Methods that were modified during the vulnerability fix, and
number of Tests that are failed by the vulnerability a.k.a. Proof
of Vulnerability (PoV).

E. µBERT

µBERT [21] is a mutation testing tool that uses a pre-trained
language model CodeBERT to generate mutants by masking
and replacing tokens. µBERT takes a Java class and extracts
the expressions to mutate. It then masks the token of interest,
e.g. a variable name, and invokes CodeBERT to complete
the masked sequence (i.e., to predict the missing token).
This approach has been proven efficient in increasing the
fault detection of test suites [21] and improving the accuracy
of learning-based bug-detectors [56] and thus, we consider
it as a representative of pre-trained language-model-based
techniques. For instance, consider the sequence int total
= out.length; taken form Figure 1a, µBERT mutates the
object field access expression length by feeding CodeBERT
with the masked sequence int total = out.<mask>;.
CodeBERT predicts the 5 most likely tokens to replace the
masked one, e.g., it predicts total, length, size, count
and value for the given masked sequence. µBERT takes these
predictions and generates mutants by replacing the masked
token with the predicted ones (per masked token creates five
mutants). µBERT discards non-compilable mutants and those
syntactically the same as the original program (cases in which
CodeBERT predicts the original masked token).

III. MOTIVATING EXAMPLES

Figures 1 and 2 show motivating examples of how generated
mutants can mimic the behavior of vulnerabilities. Fig. 1
demonstrates the example of high severity (7.5) vulnerability

CVE-2018-17201 [18] that allows “Infinite Loop”, a.k.a., a
loop with unreachable exit condition when parsing input files.
This makes the code hang which allows an attacker to perform
a Denial-of-Service (DoS) attack. The vulnerable code (Fig.
1a) is fixed with the use of an “if” expression (Fig. 1b)
to throw an exception and moves out of the loop in case of
such an event. Fig. 1c shows one of Vulnerability-mimicking
Mutants in which the “if” condition is modified, i.e., the
binary operator “<” is modified to “==”. This modification
makes the “if” condition never executed, nullifying the fix,
and behaving exactly the same as the vulnerable code.

Fig. 2 demonstrates the example of another high severity
vulnerability CVE-2018-1000850 [17] that allows “Directory
Traversal” that can result in an attacker manipulating the URL
to add or delete resources otherwise unavailable to him/her.
The vulnerable code (Fig. 2a) is fixed with the use of an “if”
expression (Fig. 2b) to throw an exception in case ‘.’ or
‘..’ appears in the “newRelativeUrl” (Fig. 2b). Fig. 2c
shows one of Vulnerability-mimicking Mutants in which the
passed argument is changed from “newRelativeUrl” to
“name” which changes the matching criteria, hence nullifying
the fix, and introducing same vulnerability behaviour.

IV. APPROACH - VMMS

The main objective of VMMS is to predict whether a
mutant is likely to be vulnerability-mimicking. In order for
our approach to be lightweight in terms of engineering and
computational effort, we want VMMS to be able to (a) learn
relevant features of Vulnerability-mimicking Mutants without
requiring manual feature definition, and (b) to do so without
costly dynamic analysis of mutant executions. To achieve this,
we divide our task into two parts: learning a representation
of mutants using code embedding technique, and learning
to predict based on such embeddings whether or not the
represented mutants are Vulnerability-mimicking Mutants.

A. Overview of VMMS

Figure 3 shows an overview of VMMS. We divide our
approach into three steps that we detail later in this section:

1) Building a token representation: VMMS pre-processes the
original code in order to remove irrelevant information
and to produce abstracted code, which is then tokenized
to form a sequence of tokens. Each mutant is eventually
transformed into its corresponding token representation
and undergoes the next step.

2) Representation learning: We train an encoder-decoder
model to generate an embedding, a.k.a. vector represen-
tation of the mutant. This step is where VMMS auto-
matically learns the relevant features of mutants without
requiring an explicit definition of these features.

3) Classification: VMMS trains a classification model to
classify the mutants (based on their embeddings) as
Vulnerability-mimicking Mutants or not. The true labels
used for training the model are obtained by i) replacing
the fixed code file with a mutated code file in the project,
ii) executing the test suite, iii) checking whether or not

TABLE I: The table records the Vulnerability dataset details that include CVE ID, CWE ID and description, Severity level
(that ranges from 0 to 10), number of Files and Methods that were modified during the vulnerability fix, and number of Tests
that are failed by the vulnerability a.k.a. Proof of Vulnerability (PoV).

CVE CWE CWE description Severity # Files #Methods Failed Tests
(Vulnerability) (Common Weakness Enumeration) (0 - 10) modified modified (PoV)

CVE-2017-18349 CWE-20 Improper Input Validation 9.8 1 1 1
CVE-2013-2186 CWE-20 Improper Input Validation 7.5 1 1 2
CVE-2014-0050 CWE-264 Permissions, Privileges, and Access Controls 7.5 2 5 1
CVE-2018-17201 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 7.5 1 1 1
CVE-2015-5253 CWE-264 Permissions, Privileges, and Access Controls 4.0 1 1 1
HTTPCLIENT-1803 NA NA NA 1 1 1
PDFBOX-3341 NA NA NA 1 1 1
CVE-2017-5662 CWE-611 Improper Restriction of XML External Entity Reference 7.3 1 2 1
CVE-2018-11797 NA NA 5.5 1 1 1
CVE-2016-6802 CWE-284 Improper Access Control 7.5 1 1 3
CVE-2016-6798 CWE-611 Improper Restriction of XML External Entity Reference 9.8 1 2 1
CVE-2017-15717 CWE-79 Improper Neutralization of Input During Web 6.1 1 2 2

Page Generation (’Cross-site Scripting’)
CVE-2016-4465 CWE-20 Improper Input Validation 5.3 1 1 1
CVE-2014-0116 CWE-264 Permissions, Privileges, and Access Controls 5.8 1 4 1
CVE-2016-8738 CWE-20 Improper Input Validation 5.8 1 1 2
CVE-2016-4436 NA NA 9.8 1 2 1
CVE-2016-2162 CWE-79 Improper Neutralization of Input During Web 6.1 1 2 1

Page Generation (’Cross-site Scripting’)
CVE-2018-8017 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 5.5 1 2 1
CVE-2014-4172 CWE-74 Improper Neutralization of Special Elements in Output 9.8 2 2 1

Used by a Downstream Component (’Injection’)
CVE-2019-3775 CWE-287 Improper Authentication 6.5 1 1 1
CVE-2018-1002200 CWE-22 Improper Limitation of a Pathname to a Restricted 5.5 1 1 1

Directory (’Path Traversal’)
CVE-2017-1000487 CWE-78 Improper Neutralization of Special Elements used 9.8 3 17 12

in an OS Command (’OS Command Injection’)
CVE-2018-20227 CWE-22 Improper Limitation of a Pathname to a Restricted 7.5 1 5 1

Directory (’Path Traversal’)
CVE-2013-5960 CWE-310 Cryptographic Issues 5.8 1 2 15
CVE-2018-1000854 CWE-74 Improper Neutralization of Special Elements in Output 9.8 1 2 1

Used by a Downstream Component (’Injection’)
CVE-2016-3720 NA NA 9.8 1 1 1
CVE-2016-7051 CWE-611 Improper Restriction of XML External Entity Reference 8.6 1 1 1
CVE-2018-1000531 CWE-20 Improper Input Validation 7.5 1 1 1
CVE-2018-1000125 CWE-20 Improper Input Validation 9.8 1 4 1
APACHE-COMMONS-001 NA NA NA 1 1 1
CVE-2013-4378 CWE-79 Improper Neutralization of Input During Web 4.3 1 1 1

Page Generation (’Cross-site Scripting’)
CVE-2018-1000865 CWE-269 Improper Privilege Management 8.8 1 3 1
CVE-2018-1000089 CWE-532 Insertion of Sensitive Information into Log File 7.4 1 2 1
CVE-2015-6748 CWE-79 Improper Neutralization of Input During Web 6.1 1 1 1

Page Generation (’Cross-site Scripting’)
CVE-2016-10006 CWE-79 Improper Neutralization of Input During Web 6.1 1 1 1

Page Generation (’Cross-site Scripting’)
CVE-2018-1000615 NA NA 7.5 1 1 1
CVE-2017-8046 CWE-20 Improper Input Validation 9.8 2 5 1
CVE-2018-11771 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 5.5 1 1 2
CVE-2018-15756 NA NA 7.5 1 5 2
CVE-2018-1000850 CWE-22 Improper Limitation of a Pathname to a Restricted 7.5 1 2 3

Directory (’Path Traversal’)
CVE-2017-1000207 CWE-502 Deserialization of Untrusted Data 8.8 1 3 1
CVE-2019-10173 CWE-502 Deserialization of Untrusted Data 9.8 1 7 1
CVE-2019-12402 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 7.5 1 1 1
CVE-2020-1953 NA NA 10.0 1 7 2

the tests failed, and iv) if yes, then matching whether the
failed tests are the same as the vulnerability’s failed tests.

It is interesting to note that the mutant representation learned
by VMMS does not depend on a particular vulnerability.
VMMS rather aims to learn properties of the mutants (and
their surrounding context) that are generally vulnerability

mimicking. This is in line with the recent work on contextual
mutant selection [13], [27], [35] that aims at selecting high-
utility mutants for mutation testing. This characteristic makes
VMMS applicable to pieces of code that it has not seen during
training. Our results also confirm the capability of VMMS to
be effective on projects not seen during training. Certainly,

private static void decompress
(final InputStream in, final byte[] out)
throws IOException {
int position = 0;
final int total = out.length;
while (position < total) {
final int n = in.read();

if (n > 128) {
final int value = in.read();
for (int i = 0; i < (n & 0x7f); i++) {
out[position++] = (byte) value; }

} else {
for (int i = 0; i < n; i++) {
out[position++] = (byte) in.read();}

}
}

}

(a) Vulnerable Code (CVE-2018-17201)

private static void decompress
(final InputStream in, final byte[] out)
throws IOException {
int position = 0;
final int total = out.length;
while (position < total) {
final int n = in.read();
if (n < 0) {
throw new ImageReadException("Error

decompressing RGBE file"); }
if (n > 128) {
final int value = in.read();
for (int i = 0; i < (n & 0x7f); i++) {
out[position++] = (byte) value; }

} else {
for (int i = 0; i < n; i++) {
out[position++] = (byte) in.read();}
}
}

}

(b) Fixed Code

private static void decompress
(final InputStream in, final byte[] out)
throws IOException {
int position = 0;
final int total = out.length;
while (position < total) {
final int n = in.read();
if (n == 0) { // ‘<’ modified to ‘==’
throw new ImageReadException("Error

decompressing RGBE file"); }
if (n > 128) {
final int value = in.read();
for (int i = 0; i < (n & 0x7f); i++) {
out[position++] = (byte) value; }

} else {
for (int i = 0; i < n; i++) {
out[position++] = (byte) in.read();}
}

}
}

(c) Vulnerability-mimicking Mutant

Fig. 1: Vulnerability CVE-2018-17201 (Fig. 1a) that allows “Infinite Loop” making code hang, which further enables Denial-of-
Service (DoS) attack is fixed with the conditional exception using “if” expression (Fig. 1b). Vulnerability-mimicking Mutant
(Fig. 1c) modifies the “if” condition that nullifies the fix and re-introduces the vulnerability.

void addPathParam(String name, String
value, boolean encoded) {

if (relativeUrl == null) {
throw new AssertionError(); }

relativeUrl = relativeUrl.replace("{" +
name + "}",
canonicalizeForPath(value,
encoded));

}

(a) Vulnerable Code (CVE-2018-1000850)

void addPathParam(String name, String
value, boolean encoded) {

if (relativeUrl == null) {
throw new AssertionError(); }

String replacement =
canonicalizeForPath(value, encoded);

String newRelativeUrl =
relativeUrl.replace("{" + name +
"}", replacement);

if (PATH_TRAVERSAL
.matcher(newRelativeUrl)
.matches()) {
throw new IllegalArgumentException(
"@Path parameters shouldn’t perform

path traversal (’.’ or ’..’): " +
value); }

relativeUrl = newRelativeUrl;
}

(b) Fixed Code

void addPathParam(String name, String
value, boolean encoded) {

if (relativeUrl == null) {
throw new AssertionError(); }
String replacement =

canonicalizeForPath(value, encoded);
String newRelativeUrl =

relativeUrl.replace("{" + name +
"}", replacement);

if (PATH_TRAVERSAL
.matcher(name)//passed argument changed
.matches()) {
throw new IllegalArgumentException(
"@Path parameters shouldn’t perform

path traversal (’.’ or ’..’): " +
value); }

relativeUrl = newRelativeUrl;
}

(c) Vulnerability-mimicking Mutant

Fig. 2: Vulnerability CVE-2018-1000850 that allows “Path Traversal”, which further enables access to a Restricted Directory
(Fig. 2a) is fixed with the conditional exception in case ‘.’ or ‘..’ appears in the “newRelativeUrl” (Fig. 2b).
Vulnerability-mimicking Mutant (Fig. 2c) in which the passed argument is changed from “newRelativeUrl” to “name”
nullifies the fix and re-introduces the vulnerability.

to make our classifier effective in practice, the selection of
the mutant generation technique is important. We use µBERT
since it produces a sufficiently large set of useful mutants by
masking and replacing tokens of the class under analysis. Also,
since it employs a pre-trained language model, it proposes
code (mutants) similar to the one written by programmers.

B. Token Representation

A major challenge in learning from raw source code is
the huge vocabulary created by the abundance of identifiers
and literals used in the code [1], [25], [26], [64], [65]. In
our case, this large vocabulary may hinder VMMS’s ability
to learn relevant features of Vulnerability-mimicking Mutants.
Thus, we first abstract original (non-mutated) source code
by replacing user-defined entities (function names, variable
names, and string literals) with generic identifiers that can
be reused across the source code file. During this step, we
also remove code comments. This pre-processing yields an

abstracted version of the original source code, as the abstracted
code snippet in Figure 3.

To perform the abstraction, we use the publicly available
tool src2abs [64]. This tool first discerns the type of each
identifier and literal in the source code. Then, it replaces
each identifier and literal in the stream of tokens with a
unique ID representing the type and role of the identifier/literal
in the code. Each ID <TYPE>_# is formed by a prefix,
(i.e., <TYPE>_) which represents the type and role of
the identifier/literal, and a numerical ID, (i.e., #) which is
assigned sequentially while traversing through the code. These
IDs are reused when the same identifier/literal appears again in
the stream of tokens. Although we use src2abs, any utility that
identifies user-defined entities and replaces such with reusable
identifiers can be used as an alternative.

Next, to represent a mutant, we annotate the abstracted
code with a mutation annotation on the statement next to
the operand/operator that has been mutated. These annotations
indicate the applied mutation operation, e.g., BinaryOperator-

public static int
max (int x, int y) {

int int_max;
if (x >= y)
{ int_max = x; }
else
{ int_max = y; }
return int_max;

}

Abstraction

public static int
VAR_1(int VAR_2, int
VAR_3) {

int VAR_4;
if (VAR_2 >= VAR_3)
{ VAR_4 = VAR_2; }
else
{ VAR_4 = VAR_3; }
return VAR_4;

}

Mutant
Annotation

public static int
VAR_1(int VAR_2, int
VAR_3) {

int VAR_4;
if (VAR_2 >=

BinaryOperatorMutator
VAR_3)

{ VAR_4 = VAR_2; }
else
{ VAR_4 = VAR_3; }
return VAR_4;

}

Flattening

public static int VAR_1 (int VAR_2
, int VAR_3) { int VAR_4 ; if (
VAR_2 >= BinaryOperatorMutator
VAR_3) { VAR_4 = VAR_2 ; } else {
VAR_4 = VAR_3 ; } return VAR_4 ;
}

Encoder
Decoder
Training

Sequence Creation

Labels

Classifier
Training

Embeddings

Sequences

Training
Set

Test Set

Training
Set

Training

Trained
Encoder
Decoder

Trained
Classifier

Embeddings

Prediction

Test Set
Predicted

Labels

Fig. 3: Overview of VMMS: Source code is abstracted and annotated to represent a mutant which is further flattened to create a
single-space-separated sequence of tokens. An encoder-decoder model is trained on sequences to generate mutant embeddings. A
classifier is trained on these embeddings and their corresponding labels (whether or not the mutants are Vulnerability-mimicking
Mutants). The trained classifier is then used for label prediction of test set mutants.

Mutator represents mutation on the binary operator “>=”, as
shown in figure 3. We repeat the process for every mutant.

Finally, we flatten every mutant (by removing newline,
extra white space, and tab characters) to create a single-
space-separated sequence of tokens. Using these sequences,
we intend to capture as much code as possible around the
mutant without incurring an exponential increase in training
time [25]–[27], [64], [66]. We found a sequence length of 150
tokens to be a good fit for our task as it does not exceed 18
hours of training time (wall clock) on a Tesla V100 GPU.

C. Embedding Learning with Encoder-Decoder
Our next step is to learn the embedding, a.k.a. vector

representation (that is later used to train a classification
model) from mutants’ token representation. We develop an
encoder-decoder model, a neural architecture commonly used
in representation learning task [36]. The key principle of our
encoder-decoder architecture is that the encoder transforms
the token representation into an embedding and the decoder
attempts to retrieve the original token representation from
the encoded embedding. The learning objective is then to
minimize the binary cross-entropy between the original token
representation and the decoded one. Once the model training
has converged, we can compute the embedding from any other
mutant’s token representation by feeding the latter into the
encoder and retrieving the output embedding.

We use a bi-directional Recurrent Neural Network (RNNs)
[9] to develop our encoder-decoder, as previous works on code
learning have demonstrated the effectiveness of these models
to learn useful representations from code sequences [4], [25]–
[27], [60]. We build VMMS on top of KerasNLP [68] which is
a natural language processing library providing a general pur-
pose Transformer Encoder-Decoder architecture following the
work of Vaswani et. al [67] which has shown to perform good
both in software engineering and other learning tasks [25],
[26], [59].

To determine an appropriate number of training epochs
for model convergence, we conducted a preliminary study
involving a small validation set (independent of both the
training and test sets used in our evaluation) where we monitor
the model’s performance in replicating (as output) the same
mutant sequence provided as input. We pursue training the
model till the training performance on the validation set does
not improve anymore. We found 10 epochs for the sequences
up to a length of 150 tokens to be a good default for our
validation sets.

D. Classifying Vulnerability-mimicking mutants

Next, we train a classification model to predict whether a
mutant, which is represented by the embedding produced by
the Encoder, is likely to be Vulnerability-mimicking Mutants.
The learning objective here is to maximize the classification
performance, which we mainly measure with Matthews Cor-
relation Coefficient (MCC), Precision, and Recall, as detailed
in section VI-B. To obtain our true classification labels, we
replace the fixed code file with a mutated code file in the
project, execute the test suite, and check whether or not the
tests failed. If the tests fail, we match if the failed tests
are the same as the vulnerability’s failed tests to determine
whether or not the mutant is a vulnerability-mimicking mutant.
For developing the classification model, we rely on random
forests [8] because these are lightweight to train and have
shown to be effective in solving various software engineering
tasks [33], [54]. We used standard parameters for random
forests, viz. we set the number of trees to 100, use Gini
impurity for splitting, and set the number of features (i.e.
embedding logits) to consider at each split to the square root
of the total number of features.

Once the model training has converged, we use the random
forest to predict whether a mutant (in the testing set) is likely to
be Vulnerability-mimicking Mutants. We make the mutant go

through the preprocessing pipeline to obtain its abstract token
representation, then feed this representation into the trained
encoder-decoder model to retrieve its embeddings, and input
this embedding into the classifier to obtain the predicted label
(vulnerability-mimicking or not).

V. RESEARCH QUESTIONS

We start our analysis by investigating how many vulnerabil-
ities in our dataset can be behaviourally mimicked by one or
more mutants, i.e., how many mutants fail the same PoVs (tests
that were failed by the respective vulnerabilities). Therefore
we ask:

RQ1 Empirical observation I: How many vulnerabilities can
be mimicked by the mutants?

For this task, we rely on Vul4J dataset [41] (section II-D) for
obtaining vulnerable projects with vulnerabilities, correspond-
ing fixes, and PoV tests, and on µBERT [21] (section II-E)
for generating mutants. In the Vul4J dataset, the fixes (for the
vulnerabilities) passed the corresponding project’s test suite
(containing the PoV tests) in 45 cases for which we mention
the details in Table I. µBERT produces mutants of the fixed
code, which are checked for mimicking the corresponding
vulnerability by replacing the fixed code file with the mutant
and executing the test suite. Apart from checking how many
vulnerabilities can be mimicked by the mutants, we also
analyze how semantically similar the generated mutants are
with the vulnerabilities. We measure the semantic similarity
of a mutant with the vulnerability by calculating the Ochiai
coefficient [47] as explained in the following section VI-A.
Hence, we ask:

RQ2 Empirical observation II: How similar are the generated
mutants with vulnerabilities?

Next, we analyze if the features of Vulnerability-mimicking
Mutants can be automatically learned by machine learning
models to statically predict these without the need of investing
effort in defining such features. We do so by training models as
explained in section IV and check the performance of VMMS
in predicting Vulnerability-mimicking Mutants. Hence, we ask:

RQ3 Prediction Performance: How effective is VMMS in au-
tomatically defining and learning the features associated
with Vulnerability-mimicking Mutants?

VI. EXPERIMENTAL SETUP

A. Semantic similarity

Mutation seeds artificial faults, a.k.a. mutants, by per-
forming slight syntactic modifications to the program under
analysis. For instance, in Figure 3, the expression x >= y
can be mutated to x < y. Semantic similarity is usually used
to evaluate fault seeding [32], [34], [52], i.e. how similar is
a mutant (seeded artificial fault) to the desired (real) fault. In
the case of this study, the desired fault is the corresponding
vulnerability.

To compute the semantic similarity we resort to dynamic
test executions. We use a similarity coefficient, i.e., Ochiai
coefficient [47], to compute the similarity of the passing and

failing test cases. This is a common practice in many different
lines of work, such as mutation testing [32], [52], program
repair [30], and code analysis [29] studies. Since semantic sim-
ilarity compares the behavior between two program versions
using a reference test suite, the Ochiai coefficient approximates
program semantics using passing and failing test cases.

The Ochiai coefficient represents the ratio between the set
of tests that fail in both versions over the total number of tests
that fail in the sum of the two. For instance, let P1, P2, fTS1

and fTS2 be two programs and their respective set of failing
tests, then the Ochiai coefficient between programs P1 and P2

is computed as:

Ochiai(P1, P2) =
|fTS1 ∩ fTS2|√
|fTS1| × |fTS2|

The Ochiai coefficient ranges from 0 to 1, with 0 in case of
none of the failed tests is the same between both versions
of the programs, (i.e., a mutant and the vulnerability that
it is trying to mimic), and 1 in case of all the failed tests
match between both versions. Intuitively, a mutant M mimics
vulnerability V , if and only if its semantic similarity is equal
to 1, i.e., Ochiai(V,M) = 1. The mutants shown in Figures
1 and 2 have an Ochiai coefficient equal to 1 with their
corresponding vulnerability.

B. Prediction Performance Metrics

Vulnerability-mimicking Mutants prediction modeling is a
binary classification problem, thus it can result in four types
of outputs: Given a mutant is vulnerability-mimicking if it
is predicted as vulnerability-mimicking, then it is a true
positive (TP); otherwise, it is a false negative (FN). Vice-
versa, if a mutant does not mimic the vulnerability and, if
it is predicted as vulnerability-mimicking then it is a false
positive (FP); otherwise, it is a true negative (TN). From
these, we can compute the traditional evaluation metrics such
as Precision and Recall, which quantitatively evaluate the
prediction accuracy of prediction models.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Intuitively, Precision indicates the ratio of correctly predicted
positives over all the considered positives. Recall indicates
the ratio of correctly predicted positives over all the actual
positives. Yet, these metrics do not take into account the true
negatives and can be misleading, especially in the case of
imbalanced data. Hence, we complement these with Matthews
Correlation Coefficient (MCC), a reliable metric of the quality
of prediction models [25], [69]. It is regarded as a balanced
measure that can be used even when the classes are of very
different sizes [58], e.g. 3.9% Vulnerability-mimicking Mutants
in total, for 45 vulnerabilities in our dataset (as shown in
Table II). MCC is calculated as:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC returns a coefficient between 1 and -1. An MCC value of
1 indicates a perfect prediction, while a value of -1 indicates

a perfect inverse prediction, i.e., a total disagreement between
prediction and reality. MCC value of 0 indicates that the
prediction performance is equivalent to random guessing.

C. Experimental Procedure

To answer our RQs, we first execute the test suite for every
mutant produced by µBERT and analyze which mutants fail
the same tests that were failed by the vulnerability to determine
Vulnerability-mimicking Mutants. In total, µBERT produces
16,409 mutants for the fixed versions of the 45 projects (for
which the 45 corresponding vulnerabilities are mentioned in
Table I). We repeated the test suite execution process for every
project to label Vulnerability-mimicking Mutants that mimic
the corresponding vulnerability.

Once the labeling is complete, to answer RQ1, we perform
an exact match of the mutant’s failed tests with the vulner-
ability’s failed tests to determine how many vulnerabilities
are mimicked by the generated mutants. To answer RQ2, we
rely on the Ochiai similarity coefficient (elaborated in Section
VI-A) to measure how similar the generated mutants are
with the vulnerabilities. We calculate the Ochiai coefficient to
compute the similarity of the passing and the failing test cases
of every vulnerability with all the corresponding project’s
mutants. To answer RQ3, we train models on Vulnerability-
mimicking Mutants and perform k-fold cross-validation (where
k = 5) at project level (our dataset has only 1 vulnerability per
project) where each fold contains 9 projects. So, we train on
mutants of 36 projects (4 training folds) and test on mutants
of the remaining 9 projects (1 test fold). Once we get the
predictions for all 45 subjects, we compute the Prediction
Performance Metrics (elaborated in Section VI-B) for VMMS
in order to show its learning ability.

VII. EXPERIMENTAL RESULTS

A. Empirical observation I (RQ1)

µBERT generates 16,409 mutants in total, for all projects
in our dataset. Out of 16,409 mutants, 646 mutants are
Vulnerability-mimicking Mutants mimicking 25 out of 45
vulnerabilities, i.e., at least one or more mutants behave the
same as 25 vulnerabilities. Overall, 3.9% of the generated
mutants mimicked 55.6% of the vulnerabilities in our dataset.
Table II shows the project-wise distribution of Vulnerability-
mimicking Mutants including the total number of mutants
generated and the number (and percentage) of mutants that
mimic the vulnerabilities. These results are encouraging and
evidence the potential value of using Vulnerability-mimicking
Mutants as test requirements in practice for security-conscious
testing, leading to test suites that can tackle similar mimicked
vulnerabilities.

TABLE II: RQ1: The table records the Vulnerability-mimicking
Mutants distribution details that include the total number of
generate mutants across all the projects with vulnerabilities,
and the number and percentage of Vulnerability-mimicking
Mutants among them. Overall, 3.9% of the generated mutants
mimic 55.6% of the vulnerabilities.

CVE # Total Vulnerability-mimicking
(Vulnerability) mutants mutants

(#) (%)

CVE-2017-18349 286 0 0%
CVE-2013-2186 191 0 0%
CVE-2014-0050 456 0 0%
CVE-2018-17201 375 8 2.13%
CVE-2015-5253 257 0 0%
HTTPCLIENT-1803 553 5 0.9%
PDFBOX-3341 2169 308 14.2%
CVE-2017-5662 511 86 16.83%
CVE-2018-11797 266 1 0.38%
CVE-2016-6802 338 16 4.73%
CVE-2016-6798 441 19 4.31%
CVE-2017-15717 437 77 17.62%
CVE-2016-4465 48 0 0%
CVE-2014-0116 167 0 0%
CVE-2016-8738 50 0 0%
CVE-2016-4436 74 0 0%
CVE-2016-2162 169 1 0.59%
CVE-2018-8017 738 17 2.3%
CVE-2014-4172 212 12 5.66%
CVE-2019-3775 9 0 0%
CVE-2018-1002200 177 0 0%
CVE-2017-1000487 586 0 0%
CVE-2018-20227 18 3 16.67%
CVE-2013-5960 112 1 0.89%
CVE-2018-1000854 9 2 22.22%
CVE-2016-3720 387 0 0%
CVE-2016-7051 387 0 0%
CVE-2018-1000531 158 2 1.27%
CVE-2018-1000125 155 14 9.03%
APACHE-COMMONS-001 144 1 0.69%
CVE-2013-4378 189 0 0%
CVE-2018-1000865 432 2 0.46%
CVE-2018-1000089 205 7 3.41%
CVE-2015-6748 989 0 0%
CVE-2016-10006 356 1 0.28%
CVE-2018-1000615 67 38 56.72%
CVE-2017-8046 12 0 0%
CVE-2018-11771 1754 12 0.68%
CVE-2018-15756 274 0 0%
CVE-2018-1000850 307 2 0.65%
CVE-2017-1000207 29 0 0%
CVE-2019-10173 1658 10 0.6%
CVE-2019-12402 246 1 0.41%
CVE-2020-1953 11 0 0%

Answer to RQ1: µBERT-generated 646 out of 16,409
mutants mimicked 25 out of 45 vulnerabilities, i.e.,
3.9% of the generated mutants mimicked 55.6% of the
vulnerabilities. This evidence that pre-trained language
models can produce test requirements (mutants) that
behave the same as vulnerabilities, making security-
conscious mutation testing feasible.

"C
VE

-2
01

7-
18

34
9"

"C
VE

-2
01

3-
21

86
"

"C
VE

-2
01

4-
00

50
"

"C
VE

-2
01

8-
17

20
1"

"C
VE

-2
01

5-
52

53
"

"H
TT

PC
LIE

NT
-1

80
3"

"P
DF

BO
X-

33
41

"
"C

VE
-2

01
7-

56
62

"
"C

VE
-2

01
8-

11
79

7"
"C

VE
-2

01
6-

68
02

"
"C

VE
-2

01
6-

67
98

"
"C

VE
-2

01
7-

15
71

7"
"C

VE
-2

01
6-

44
65

"
"C

VE
-2

01
4-

01
16

"
"C

VE
-2

01
6-

87
38

"
"C

VE
-2

01
6-

44
36

"
"C

VE
-2

01
6-

21
62

"
"C

VE
-2

01
8-

80
17

"
"C

VE
-2

01
4-

41
72

"
"C

VE
-2

01
9-

37
75

"
"C

VE
-2

01
8-

10
02

20
0"

"C
VE

-2
01

7-
10

00
48

7"
"C

VE
-2

01
8-

20
22

7"
"C

VE
-2

01
3-

59
60

"
"C

VE
-2

01
8-

10
00

85
4"

"C
VE

-2
01

6-
37

20
"

"C
VE

-2
01

6-
70

51
"

"C
VE

-2
01

8-
10

00
53

1"
"C

VE
-2

01
8-

10
00

12
5"

"A
PA

CH
E-

CO
MM

ON
S-

00
1"

"C
VE

-2
01

3-
43

78
"

"C
VE

-2
01

8-
10

00
86

5"
"C

VE
-2

01
8-

10
00

08
9"

"C
VE

-2
01

5-
67

48
"

"C
VE

-2
01

6-
10

00
6"

"C
VE

-2
01

8-
10

00
61

5"
"C

VE
-2

01
7-

80
46

"
"C

VE
-2

01
8-

11
77

1"
"C

VE
-2

01
8-

15
75

6"
"C

VE
-2

01
8-

10
00

85
0"

"C
VE

-2
01

7-
10

00
20

7"
"C

VE
-2

01
9-

10
17

3"
"C

VE
-2

01
9-

12
40

2"
"C

VE
-2

02
0-

19
53

"

CVE

0.0

0.2

0.4

0.6

0.8

1.0
Oc

hi
ai

Fig. 4: RQ2: Distribution of the mutant-vulnerability similarity in terms of Ochiai similarity coefficient across all the
vulnerabilities when compared for similarity with the generated mutants. Overall, 16.6% of the mutants fail one or more
tests that were failed by 88.9% of the respective vulnerabilities.

B. Empirical observation II (RQ2)

In addition to 646 mutants mimicking 25 vulnerabilities, i.e.,
646 mutants failed by exactly the same tests as the respective
25 vulnerabilities of the corresponding projects, 2,720 mutants
achieved the Ochiai similarity coefficient greater than 0 with
40 vulnerabilities of the corresponding projects. This shows
that 2,720 mutants, i.e., 16.6% of the mutants fail one or
more tests (of the corresponding projects) that were failed by
40 respective vulnerabilities, i.e., 88.9% of the vulnerabilities
in our dataset. Figure 4 provides an overview of the mutant-
vulnerability similarity in terms of Ochiai similarity coefficient
distribution across all the vulnerabilities in our dataset when
compared for similarity with the generated mutants.

Despite not behaving exactly the same as the vulnerability,
there are many mutants that share some vulnerable behaviors
which can help testers to identify the cause of the vulnerability.
Moreover, vulnerability-similar mutants can help to design
more thorough and complete suites to tackle vulnerabilities.

Answer to RQ2: µBERT-generated 2,720 out of 16,409
mutants achieved an Ochiai similarity coefficient
greater than 0 with 40 out of 45 vulnerabilities, i.e.,
16.6% of the generated mutants fail one or more tests
(of the corresponding projects) that were failed by
88.9% of the respective vulnerabilities.

C. Prediction Performance (RQ3)

Despite the class imbalance, VMMS effectively predicts
Vulnerability-mimicking Mutants with a prediction perfor-

mance of 0.63 MCC, 0.80 Precision, and 0.51 Recall out-
performing a random selection of Vulnerability-mimicking
Mutants (i.e., MCC equals 0). These scores indicate that the
features of Vulnerability-mimicking Mutants can be automati-
cally learned by machine learning models to statically predict
these without the need of investing effort in defining such
features. Indeed, any improvement in the mutation testing tools
or the pre-trained language models that allow producing better
Vulnerability-mimicking Mutants, can leverage VMMS to select
a more complete set of security-related test requirements.

Answer to RQ3: VMMS achieves a prediction perfor-
mance of 0.63 MCC, 0.80 Precision, and 0.51 Recall
in predicting Vulnerability-mimicking Mutants. This
indicates that the features of Vulnerability-mimicking
Mutants can be automatically learned by machine
learning models to statically prioritize these prior to
any analysis or execution.

VIII. THREATS TO VALIDITY

External Validity: Threats may relate to the vulnerabili-
ties we considered in our study. Although our evaluation
expands to vulnerabilities of severity ranging from high to
low, spanning from single method fix to multiple methods
modified during the fix (as shown in Table I, the results
may not generalize to other vulnerabilities. We consider this
threat of low importance since we verify all the vulnerabilities
and also their fixes by executing tests provided in the Vul4J
dataset [12]. Moreover, our predictions are based on the local

mutant context, which has been shown to be a determinant
of mutants’ utility [27], [35]. Other threats may relate to the
mutant generation tool, i.e., µBERT that we used. This choice
was made since µBERT relies on CodeBERT to produce
mutations that look natural and are effective for mutation
tesing. We consider this threat of low importance since one
can use a better mutant generation tool that can produce more
Vulnerability-mimicking Mutants, which will help VMMS in
achieving better prediction performance. Nevertheless, in case
other techniques produce different predictions, one could re-
train, tune and use VMMS for the specific method of interest,
as we did here with µBERT mutants.

Internal Validity: Threats may relate to the restriction that
we impose on sequence length, i.e., a maximum of 150 tokens.
This was done to enable reasonable model training time,
approximately 18 hours to learn mutant embeddings on Tesla
V100 gpu. Other threats may be due to the use of Transformer
Encoder-Decoder following the work of Vaswani et. al [67]
for learning mutant embeddings. This choice was made for
simplicity to use the related framework out of the box similar
to the related studies [25], [59]. Other internal validity threats
could be related to the test suites we used and the mutants
considered as vulnerability mimicking. We used well-tested
projects provided by the Vul4J dataset [12]. To be more
accurate, our underlying assumption is that the extensive pool
of tests including the Proof-of-Vulnerability (PoV) available
in our experiments is a valid approximation of the program’s
test executions, especially the proof of a vulnerability and its
verified fix.

Construct Validity: Threats may relate to our metric to mea-
sure the semantic similarity of a mutant and a vulnerability,
i.e., the Ochiai coefficient. We relied on the Ochiai coefficient
because it is widely known in the fault-seeding community
as a representative metric to capture the semantic similarity
between a seeded and real fault. In the context of this study, the
seeded fault is a mutant and the real fault is a vulnerability. We
consider this treat of low importance as the Ochiai coefficient
takes into consideration the failed tests of a mutant and a
vulnerability (as explained in section VI-A) representing the
observable behavior and serving its purpose for this study.

IX. RELATED WORK

The unlikelihood of standard PIT [16] operators to produce
security-aware mutants was observed by Loise et al. [40]
where the authors designed pattern based operators to target
specific vulnerabilities. They relied on static analysis for
validation of generated mutants to have similarities with their
targeted vulnerabilities.

Fault modeling related to security policies was explored
by Mouehli et al. [44] where they designed new mutation
operators corresponding to fault models for access control
security policies. Their designed operators targeted modifying
user roles and deleting policy rules to modify application
context, specifically targeting the implementation of access
control policies.

Mutating high-level security protocol language (HLPSL)
models to generate abstract test cases was explored by Dadeau
et al. [19] where their proposed mutations targeted to introduce
leaks in the security protocols. They relied on the automated
validation of Internet security protocols and applications tool
set to declare the mutated protocol unsafe and capable of
exploiting the security flaws.

Targeting black box testing by mutating web applications’
abstract models was explored by Buchler et al. [11] where they
produced model mutants by removing authorization checks
and introducing noisy (non-sanitized) data. They relied on
model-checkers to generate execution traces of their mutated
models for the creation of intermediate test cases. Their work
was focused on guiding penetration testers to find attacks ex-
ploiting implementation-based vulnerabilities (e.g., a missing
check in a RBAC system, non-sanitized data leading to XSS
attacks).

Similar to Loise et al., Nanavati et al. [45] also show
that traditional mutation operators only simulate some sim-
ple syntactic errors. Hence, they designed memory mutation
operators to target memory faults and control flow deviation.
They focused on programs in C language and rely on memory
allocation primitives in specific to C. Similarly, Shahriar and
Zulkernine [57] and Ghosh et al. [28] also defined mutation
operators related to the memory faults. Their designed opera-
tors also exploited memory manipulation in C programs (such
as buffer overflows, uninitialized memory allocations, etc.),
which security attacks may exploit. These works also focused
on programs in C language.

Unlike the above-mentioned related works, we do not target
a specific vulnerability pattern/type. Also, since we rely on a
pre-trained language model (employed by µBERT), we do not
require to design specific mutation operators to target specific
security issues. Additionally, our validation of vulnerability-
mimicking mutants is not based on a static analysis, but rather
a dynamic proof as our produced/predicted vulnerability-
mimicking mutants fails tests that were failed by respective
vulnerabilities, a.k.a., Proof-of-vulnerability (PoV).

X. CONCLUSION

In this study, we showed that language model based mu-
tation testing tools can produce Vulnerability-mimicking Mu-
tants, i.e., mutants that mimic the observable behavior of
vulnerabilities. Since these mutants are a few, i.e., 3.9% of
the entire mutant set, there is a need for a static approach to
identify such mutants. To achieve this, we presented VMMS, a
method that learns to select Vulnerability-mimicking Mutants
from given mutant’s code context. Our experiments show
that VMMS identified Vulnerability-mimicking Mutants with
0.63 MCC, 0.80 Precision, and 0.51 Recall, which indicates
that the features of Vulnerability-mimicking Mutants can be
automatically learned by machine learning models to statically
predict these without the need of investing effort in defining
such features.

REFERENCES

[1] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq:
Generating sequences from structured representations of code. In 7th
International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[2] Paul Ammann, Márcio Eduardo Delamaro, and Jeff Offutt. Establishing
theoretical minimal sets of mutants. In Seventh IEEE International
Conference on Software Testing, Verification and Validation, ICST 2014,
March 31 2014-April 4, 2014, Cleveland, Ohio, USA, pages 21–30. IEEE
Computer Society, 2014.

[3] Paul Ammann and Jeff Offutt. Introduction to Software Testing.
Cambridge University Press, 2008.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. In 3rd
International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[5] Patrick Bareiß, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel.
Code generation tools (almost) for free? A study of few-shot, pre-trained
language models on code. CoRR, abs/2206.01335, 2022.

[6] Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz
Machalica, Satish Chandra, and Erik Meijer. What it would take
to use mutation testing in industry - A study at facebook. In 43rd
IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP), pages 268–277. IEEE, 2021.

[7] Guru Prasad Bhandari, Amara Naseer, and Leon Moonen. Cvefixes:
automated collection of vulnerabilities and their fixes from open-source
software. In Shane McIntosh, Xin Xia, and Sousuke Amasaki, editors,
PROMISE ’21: 17th International Conference on Predictive Models and
Data Analytics in Software Engineering, Athens Greece, August 19-20,
2021, pages 30–39. ACM, 2021.

[8] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.
[9] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le.

Massive exploration of neural machine translation architectures. CoRR,
abs/1703.03906, 2017.

[10] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. Se-
curity mutants for property-based testing. In Martin Gogolla and
Burkhart Wolff, editors, Tests and Proofs - 5th International Conference,
TAP@TOOLS 2011, Zurich, Switzerland, June 30 - July 1, 2011.
Proceedings, volume 6706 of Lecture Notes in Computer Science, pages
69–77. Springer, 2011.

[11] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. Semi-
automatic security testing of web applications from a secure model.
In Sixth International Conference on Software Security and Reliability,
SERE 2012, Gaithersburg, Maryland, USA, 20-22 June 2012, pages 253–
262. IEEE, 2012.

[12] Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E. Dı́az Ferreyra.
Vul4j: A dataset of reproducible java vulnerabilities geared towards the
study of program repair techniques. In 19th IEEE/ACM International
Conference on Mining Software Repositories, MSR 2022, Pittsburgh, PA,
USA, May 23-24, 2022, pages 464–468. ACM, 2022.

[13] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F. Bissyandé,
Yves Le Traon, and Koushik Sen. Selecting fault revealing mutants.
Empir. Softw. Eng., 25(1):434–487, 2020.

[14] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark
Harman. An empirical study on mutation, statement and branch coverage
fault revelation that avoids the unreliable clean program assumption. In
Proceedings of the 39th International Conference on Software Engi-
neering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages
597–608. IEEE / ACM, 2017.

[15] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet,
Denys Poshyvanyk, and Martin Monperrus. Sequencer: Sequence-to-
sequence learning for end-to-end program repair. IEEE Trans. Software
Eng., 47(9):1943–1959, 2021.

[16] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis,
and Anthony Ventresque. Pit: A practical mutation testing tool for java
(demo). In Proceedings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, page 449–452, New York, NY, USA,
2016. Association for Computing Machinery.

[17] Cve-2018-1000850. https://nvd.nist.gov/vuln/detail/
CVE-2018-1000850, (accessed January 10, 2023).

[18] Cve-2018-17201. https://nvd.nist.gov/vuln/detail/CVE-2018-17201, (ac-
cessed January 10, 2023).

[19] Frédéric Dadeau, Pierre-Cyrille Héam, Rafik Kheddam, Ghazi Maatoug,
and Michaël Rusinowitch. Model-based mutation testing from security
protocols in HLPSL. Softw. Test. Verification Reliab., 25(5-7):684–711,
2015.

[20] Definition of vulnerability. https://www.cve.org/ResourcesSupport/
Glossary/#, (accessed January 10, 2023).

[21] Renzo Degiovanni and Mike Papadakis. µbert: Mutation testing using
pre-trained language models. In 15th IEEE International Conference on
Software Testing, Verification and Validation Workshops ICST Workshops
2022, Valencia, Spain, April 4-13, 2022, pages 160–169. IEEE, 2022.

[22] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints
on test data selection: Help for the practicing programmer. Computer,
11(4):34–41, 1978.

[23] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. A C/C++
code vulnerability dataset with code changes and CVE summaries. In
Sunghun Kim, Georgios Gousios, Sarah Nadi, and Joseph Hejderup,
editors, MSR ’20: 17th International Conference on Mining Software
Repositories, Seoul, Republic of Korea, 29-30 June, 2020, pages 508–
512. ACM, 2020.

[24] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. Codebert: A pre-trained model for programming and natural
languages. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings, EMNLP, volume
EMNLP 2020 of Findings of ACL, pages 1536–1547. Association for
Computational Linguistics, 2020.

[25] Aayush Garg, Renzo Degiovanni, Matthieu Jimenez, Maxime Cordy,
Mike Papadakis, and Yves Le Traon. Learning from what we know: How
to perform vulnerability prediction using noisy historical data. Empir.
Softw. Eng., 27(7):169, 2022.

[26] Aayush Garg, Renzo Degiovanni, Facundo Molina, Mike Papadakis,
Nazareno Aguirre, Maxime Cordy, and Yves Le Traon. Assertion
inferring mutants. CoRR, abs/2301.12284, 2023.

[27] Aayush Garg, Milos Ojdanic, Renzo Degiovanni, Thierry Titcheu
Chekam, Mike Papadakis, and Yves Le Traon. Cerebro: Static sub-
suming mutant selection. IEEE Transactions on Software Engineering,
pages 1–1, 2022.

[28] Anup K. Ghosh, Tom O’Connor, and Gary McGraw. An automated
approach for identifying potential vulnerabilities in software. In Security
and Privacy - 1998 IEEE Symposium on Security and Privacy, Oakland,
CA, USA, May 3-6, 1998, Proceedings, pages 104–114. IEEE Computer
Society, 1998.

[29] Nicolas E. Gold, David W. Binkley, Mark Harman, Syed S. Islam,
Jens Krinke, and Shin Yoo. Generalized observational slicing for tree-
represented modelling languages. In Eric Bodden, Wilhelm Schäfer,
Arie van Deursen, and Andrea Zisman, editors, Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, pages 547–558. ACM,
2017.

[30] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. Genprog: A generic method for automatic software repair.
IEEE Trans. Software Eng., 38(1):54–72, 2012.

[31] Yue Jia and Mark Harman. Higher order mutation testing. Inf. Softw.
Technol., 51(10):1379–1393, 2009.

[32] Yue Jia and Mark Harman. Higher order mutation testing. Information
and Software Technology, 51(10):1379–1393, 2009. Source Code
Analysis and Manipulation, SCAM 2008.

[33] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro,
Yves Le Traon, and Mark Harman. The importance of accounting
for real-world labelling when predicting software vulnerabilities. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, page 695–705, New York, NY, USA,
2019. Association for Computing Machinery.

[34] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid
Holmes, and Gordon Fraser. Are mutants a valid substitute for real
faults in software testing? In Shing-Chi Cheung, Alessandro Orso,
and Margaret-Anne D. Storey, editors, Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, pages
654–665. ACM, 2014.

[35] René Just, Bob Kurtz, and Paul Ammann. Inferring mutant utility from
program context. In Proceedings of the 26th ACM SIGSOFT Interna-

https://nvd.nist.gov/vuln/detail/CVE-2018-1000850
https://nvd.nist.gov/vuln/detail/CVE-2018-1000850
https://nvd.nist.gov/vuln/detail/CVE-2018-17201
https://www.cve.org/ResourcesSupport/Glossary/#
https://www.cve.org/ResourcesSupport/Glossary/#

tional Symposium on Software Testing and Analysis, Santa Barbara, CA,
USA, July 10 - 14, 2017, pages 284–294, 2017.

[36] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation
models. In Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2013, 18-21 October 2013,
Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1700–1709. ACL, 2013.

[37] Marinos Kintis, Mike Papadakis, and Nicos Malevris. Evaluating
mutation testing alternatives: A collateral experiment. In 17th Asia Pa-
cific Software Engineering Conference, APSEC 2010, Sydney, Australia,
November 30 - December 3, 2010, pages 300–309. IEEE Computer
Society, 2010.

[38] Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro,
Mariet Kurtz, and Nida Gökçe. Analyzing the validity of selective
mutation with dominator mutants. In Thomas Zimmermann, Jane
Cleland-Huang, and Zhendong Su, editors, Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, pages
571–582. ACM, 2016.

[39] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. Multi-task learning based
pre-trained language model for code completion. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, page 473–485, New York, NY, USA, 2021. Association
for Computing Machinery.

[40] Thomas Loise, Xavier Devroey, Gilles Perrouin, Mike Papadakis, and
Patrick Heymans. Towards security-aware mutation testing. In 2017
IEEE International Conference on Software Testing, Verification and
Validation Workshops, ICST Workshops 2017, Tokyo, Japan, March 13-
17, 2017, pages 97–102. IEEE Computer Society, 2017.

[41] Facundo Molina, Marcelo d’Amorim, and Nazareno Aguirre. Fuzzing
class specifications. In 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022, pages 1008–1020. ACM, 2022.

[42] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo F. Frias.
Evospex: An evolutionary algorithm for learning postconditions. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021, pages 1223–1235. IEEE, 2021.

[43] Tejeddine Mouelhi, Franck Fleurey, Benoit Baudry, and Yves Le Traon.
A model-based framework for security policy specification, deployment
and testing. In Model Driven Engineering Languages and Systems, 11th
International Conference, MoDELS 2008, Toulouse, France, September
28 - October 3, 2008. Proceedings, volume 5301 of Lecture Notes in
Computer Science, pages 537–552. Springer, 2008.

[44] Tejeddine Mouelhi, Yves Le Traon, and Benoit Baudry. Mutation
analysis for security tests qualification. In Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTATION
(TAICPART-MUTATION 2007), pages 233–242, 2007.

[45] Jay Nanavati, Fan Wu, Mark Harman, Yue Jia, and Jens Krinke.
Mutation testing of memory-related operators. In Eighth IEEE Inter-
national Conference on Software Testing, Verification and Validation,
ICST 2015 Workshops, Graz, Austria, April 13-17, 2015, pages 1–10.
IEEE Computer Society, 2015.

[46] National vulnerability database. https://nvd.nist.gov, (accessed January
10, 2023).

[47] Akira OCHIAI. Zoogeographical studies on the soleoid fishes found in
japan and its neighhouring regions-ii. NIPPON SUISAN GAKKAISHI,
22(9):526–530, 1957.

[48] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch,
and Christian Zapf. An experimental determination of sufficient mutant
operators. ACM Trans. Softw. Eng. Methodol., 5(2):99–118, 1996.

[49] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and
Yves Le Traon. Threats to the validity of mutation-based test assessment.
In Proceedings of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016,
pages 354–365. ACM, 2016.

[50] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and
Mark Harman. Chapter six - mutation testing advances: An analysis and
survey. Adv. Comput., 112:275–378, 2019.

[51] Mike Papadakis and Nicos Malevris. Automatic mutation test case
generation via dynamic symbolic execution. In IEEE 21st International
Symposium on Software Reliability Engineering, ISSRE 2010, San Jose,
CA, USA, 1-4 November 2010, pages 121–130. IEEE Computer Society,
2010.

[52] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. Are
mutation scores correlated with real fault detection?: a large scale
empirical study on the relationship between mutants and real faults.
In Proceedings of the 40th International Conference on Software En-
gineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
pages 537–548, 2018.

[53] Jibesh Patra and Michael Pradel. Semantic bug seeding: a learning-
based approach for creating realistic bugs. In Diomidis Spinellis,
Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta, editors,
ESEC/FSE 2021, pages 906–918. ACM, 2021.

[54] Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim,
Christoph Treude, and Antonia Bertolino. What is the vocabulary of
flaky tests? In Proceedings of the 17th International Conference on
Mining Software Repositories, MSR ’20, page 492–502, New York, NY,
USA, 2020. Association for Computing Machinery.

[55] Stuart Reid. Software fault injection: Inoculating programs against
errors, by jeffrey voas and gary mcgraw, wiley, 1998 (book review).
Softw. Test. Verification Reliab., 9(1):75–76, 1999.

[56] Cedric Richter and Heike Wehrheim. Learning realistic mutations: Bug
creation for neural bug detectors. In 2022 IEEE Conference on Software
Testing, Verification and Validation (ICST), pages 162–173, 2022.

[57] Hossain Shahriar and Mohammad Zulkernine. Mutation-based testing
of buffer overflow vulnerabilities. In Proceedings of the 32nd Annual
IEEE International Computer Software and Applications Conference,
COMPSAC 2008, 28 July - 1 August 2008, Turku, Finland, pages 979–
984. IEEE Computer Society, 2008.

[58] Martin J. Shepperd, David Bowes, and Tracy Hall. Researcher bias:
The use of machine learning in software defect prediction. IEEE Trans.
Software Eng., 40(6):603–616, 2014.

[59] Apeksha Shewalkar, Deepika Nyavanandi, and Simone A. Ludwig.
Performance evaluation of deep neural networks applied to speech
recognition: Rnn, LSTM and GRU. J. Artif. Intell. Soft Comput. Res.,
9(4):235–245, 2019.

[60] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence
learning with neural networks. In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 3104–3112, 2014.

[61] Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè.
Evolutionary improvement of assertion oracles. In ESEC/FSE ’20, USA,
November 8-13, 2020, pages 1178–1189. ACM, 2020.

[62] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundare-
san. Generating accurate assert statements for unit test cases using
pretrained transformers. In IEEE/ACM AST@ICSE 2022, Pittsburgh,
PA, USA, May 21-22, 2022, pages 54–64. ACM/IEEE, 2022.

[63] Michele Tufano, Jason Kimko, Shiya Wang, Cody Watson, Gabriele
Bavota, Massimiliano Di Penta, and Denys Poshyvanyk. Deepmutation:
A neural mutation tool. In ICSE: Companion Proceedings, ICSE ’20,
page 29–32, New York, USA, 2020. ACM.

[64] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota,
and Denys Poshyvanyk. On learning meaningful code changes via neural
machine translation. In ICSE 2019, May 25-31, 2019, pages 25–36. IEEE
/ ACM, 2019.

[65] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. An empirical study on learning
bug-fixing patches in the wild via neural machine translation. ACM
Trans. Softw. Eng. Methodol., 28(4):19:1–19:29, 2019.

[66] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. Learning how to mutate source
code from bug-fixes. In 2019 IEEE ICSME 2019, Cleveland, OH, USA,
September 29 - October 4, 2019, pages 301–312. IEEE, 2019.

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In NIPS 2017, December, 2017, pages 5998–6008, 2017.

[68] Matthew Watson, Chen Qian, Jonathan Bischof, François Chollet, et al.
Kerasnlp. https://github.com/keras-team/keras-nlp, 2022.

[69] Jingxiu Yao and Martin J. Shepperd. Assessing software defection
prediction performance: why using the matthews correlation coefficient
matters. In EASE ’20, April 15-17, 2020, pages 120–129. ACM, 2020.

[70] Lingming Zhang, Milos Gligoric, Darko Marinov, and Sarfraz Khurshid.
Operator-based and random mutant selection: Better together. In ASE
2013, Silicon Valley, CA, USA, November 11-15, 2013, pages 92–102.
IEEE, 2013.

https://nvd.nist.gov
https://github.com/keras-team/keras-nlp

	I Introduction
	II Background
	II-A Mutation Testing
	II-B Vulnerabilities
	II-C Vulnerability-mimicking Mutants
	II-D Vul4J
	II-E BERT

	III Motivating Examples
	IV Approach - VMMS
	IV-A Overview of VMMS
	IV-B Token Representation
	IV-C Embedding Learning with Encoder-Decoder
	IV-D Classifying Vulnerability-mimicking mutants

	V Research Questions
	VI Experimental Setup
	VI-A Semantic similarity
	VI-B Prediction Performance Metrics
	VI-C Experimental Procedure

	VII Experimental Results
	VII-A Empirical observation I (RQ1)
	VII-B Empirical observation II (RQ2)
	VII-C Prediction Performance (RQ3)

	VIII Threats to Validity
	IX Related Work
	X Conclusion
	References

